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Abstract

Models of pneumatic and spring gun ballistics are detailed. These models are applicable to potato
and Nerf guns. Derivations are included as are references to other relevant papers and websites. Theory
is compared against experimental data when possible. Limitations of the theory are made clear.

Disclaimer

This document is a work in progress. It was developed out of several different notes I wrote starting in 
and ending roughly in . The notations are not entirely consistent, not everything is up to date, not
everything is correct, and not everything is complete. This  version has updated contact information
but otherwise is unchanged aside from this disclaimer.
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.. Solution for ẏ(t) and y(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Equation for range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Range energy efficiency ηr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Estimating muzzle velocity from range . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Drag coefficient of a Nerf dart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Time to target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Optimal firing angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Case without drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Case with drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Accuracy and precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Accuracy and precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Summary of ways to improve accuracy and precision . . . . . . . . . . . . . . . . . . 

. Center of gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Center of pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Side wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Dart stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Muzzle blast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Why rifling does not help Nerf darts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Alternative ammo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Design 
. Turrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Sights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Ergonomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Darts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Materials 
. Nerf gun material failure case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Adhesives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 





. Impact design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Stress concentrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Barrels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. What the table means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Each material in summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Which should I use? / Which is best? . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Gas reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. General background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Number of shots from a gas source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Latex tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. Stresses in gas reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Plunger rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Common failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Testing and test data 
. Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Muzzle velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Compensating chronometer readings to account for drag . . . . . . . . . . . . . . . . 
. Dart mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Dart stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

References 





 Glossary

C:B ratio (CB) — the ratio of the chamber volume to barrel volume. Mathematically this is CB ≡ Vc/Vb.
This term came from spud-gun hobbyists [Spua]. In this document, the barrel volume is defined as
the volume displaced by the projectile’s trajectory, which does not include “dead space”. Others might
include dead space. This means that the alternative C:B ratio is ĈB ≡ Vc/(Vb + Vd) = CB /(1 + V∗

d )

where V∗
d ≡ Vd/Vb = Vd/(AbLb).

Dead space (Vd) — also called dead volume — the volume between the flow restriction in the system
(whether a valve in a pneumatic or a contraction in a springer) and the projectile before firing.

Pressure of friction (Pf) — a way to describe friction on the projectile used originally by Hall [Hal]. The
normal force from the projectile pushing onto the inside of the barrel is rarely known (though it can
be estimated). In a computer simulation, the only quantity you need is the actual resisting force of
friction divided by the cross-sectional area of the barrel tube, which is essentially a pressure. Thus,
Pf ≡ Ff/Ab where Ff ≡ µN where µ is the coefficient of friction and N is the normal force. The
dynamic friction is denoted with Pfd and the static friction is denoted with Pfs.

Valve opening time (to) — the time it takes for the valve to go from completely closed to completely open.
The completely open state may not be achieved in reality. The valve opening profile is the valve flow
coefficient as a function of % open.

Dwell time (td) — the time from when the trigger is pulled to when the projectile leaves the barrel. The
dwell time can be estimated from the muzzle velocity as td ≈ Lb/Vm.

Barrel length (Lb) — the length of the barrel. More specifically, the length from the back end of the projectile
to the opposite end of the barrel. That is the choice assumed in my models.

Muzzle velocity (Vm) — the projectile’s speed (so it’s not a vector like velocity) as it exits the muzzle (end
of the barrel). The incorrect usage of velocity is kept because this term is very common.

Flow factor (C∗) — a way to quantify how “fast” a valve opens. In pneumatic and spring guns with “fast”
valves, the barrel and gas chamber or plunger pressures are both equal.

Fineness ratio (L/d) — also slenderness ratio or aspect ratio — sometimes seen as the variable δ —

Chambrage (dc/db =
√

Ac/Ab ) — the ratio of the chamber diameter to barrel diameter. Generally, a
higher value of this quantity improves performance.

Beta factor (β) — the ratio of upstream pipe diameter to the minimum diameter of an orifice, e.g., β ≡
du/dmin. This is similar to the chambrage, though not the same aside from the case of pure reductions
in area with no intermediate state.

Critical pressure ratio (b) — the pressure ratio which will “choke” the velocity - commonly denoted with b
or (Pd/Pu)crit. Choked flow occurs when the velocity in the valve/orifice/nozzle reaches a maximum
and the velocity will not increase as the pressure ratio increases. However, note that mass flow rare
can increase if upstream density increases. Many people (even authors of textbooks) seem to not
understand that.

 Internal ballistics and gun processes

. Ideal barrel length

One of the holy grails of Nerf engineering is a rule for ideal or optimal barrel length. Below I detail how to
estimate the ideal barrel length for the case where there are no flow restrictions and the plunger/chamber
pressure is the same as the barrel pressure. This is usually not a realistic case, but it can help understanding
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of internal ballistics. More general and accurate equations for the ideal barrel length are detailed later in
the internal ballistics section.

Approximate equations for the optimal C:B ratios can be found from adiabatic process relationships when
C∗ is high. C∗ is dimensionless version of the flow coefficient between the gas chamber or plunger and the
barrel. C∗ is high for high valve/restriction flow rates (in this case, a valve/restriction that allows the barrel
pressure to equal) and heavy darts. For a certain value of C∗ (the “critical” value), the performance of a
gun matches that of the adiabatic process. However, the transition criteria is a function of the static friction
force on the dart in the barrel, along with potentially other things. The critical value decreases for static
friction values that allow the pressure in the barrel to build up to or near the chamber pressure before the
dart starts to move.

These solutions assume that the pressure in the gas chamber and barrel are identical and that the pro-
cess occurs infinitesimally slow. Reversible adiabatic processes (which are isentropic processes) fit these
conditions.

Numerical simulation results fit the pneumatic solution for high C∗ and negligible Vd. The springer results
have not been compared against numerical simulations.

Pneumatic case. This result is only valid for small V∗
d because in the initial state the gas in the dead space

is neglected. Start with the adiabatic process relationship,

PcVγ
c = (Patm + Pf)(Vc + Vb + Vd)

γ , (.)

and non-dimensionalize it to find the ideal C:B ratio equation:

Pc
Patm + Pf

=

(
Vc + Vb + Vd

Vc

)γ

, (.)

=

(
1 +

Vb
Vc

+
Vd
Vb

Vb
Vc

)γ

, (.)

Pc/Patm
(Patm + Pf)/Patm

=

[
1 +

1
CB

(1 + V∗
d )

]γ

, (.)(
P∗

c
1 + P∗

f

)1/γ

− 1 =
1

CB
(1 + V∗

d ) (.)

CB =
1 + V∗

d(
P∗

c
1 + P∗

f

)1/γ

− 1

. (.)
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Then you can rearrange this to find the physical ideal length of the barrel,

Vc

���AbLb
=

1 +
Vd

AbLb
Pc

Patm

1 +
Pf

Patm


1/γ

− 1

AbLb , (.)

Vc =
AbLb + Vd(
Pc

Patm + Pf

)1/γ

− 1

, (.)

Lb =

Vc

[(
Pc

Patm + Pf

)1/γ

− 1

]
− Vd

Ab
(.)

Spring case. The system starts at atmospheric pressure with the volume being the entire volume of the
plunger tube (V0) plus the dead space (Vd). The firing process ends with the displaced volume of the
plunger replaced by the barrel volume (Vb), the dead space, and the final volume of the plunger tube (Vpf,
i.e., the volume of the plunger tube when the dart leaves the barrel). In practice, the final volume of the
plunger tube is not known and is sometimes assumed to be zero, though this is not rigorous.

Start, as before, with the adiabatic process relationship,

Patm(V + Vd)
γ = (Patm + Pfd)(Vpf + Vd + Vb)

γ . (.)

Following a procedure similar to the pneumatic case leads to

CB =
1 + V∗

d

(1 + V∗
d )

(
1

1 + P∗
fd

)1/γ

− V∗
pf

, (.)

and

Lb =

(AcL0 + Vd)

(
Patm

Patm + Pfd

)1/γ

− Vpf − Vd

Ab
. (.)

boltsniper’s ideal barrel length. Readers might be aware of the results of some tests Evan Neblett (A.K.A.
boltsniper) did in  when he was designing the FAR [Neb]. boltsniper, for the uninitiated, is one
of the few engineers in the Nerf hobby, so his words have some authority behind them. People generally
misrepresent what he said and overstate this formula’s abilities. What boltsniper actually said is written
below. The emphasis is mine.

I did some experimentation to determine what would be the optimal barrel length for a given
plunger size. The goal was to find the barrel length for which the dart would exit the barrel as the plunger
reaches the end of the plunger tube. I started off by matching the volume of the plunger to the
volume of the barrel. I knew that this was going to produce too long a barrel but it was a good
place to start. This would assume that the air inside the plunger and barrel is incompressible
and that there are no leaks. In the real world this is not the case. I reduced the barrel length until
I had found the length at which the dart was leaving the barrel as the plunger was reaching its
stop, coinciding with the maximum attainable range. Experimentally the plunger volume seems
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to be about  times that of the barrel. The relation for barrel to plunger size can be summed up
in the following equation,

4πr2
blb = πr2

plp (.)

where rb is the barrel radius, rp is the plunger radius, lb is the barrel length, and lp is the plunger
length. For Nerf applications the barrel is almost always /” PVC or CPVC. rb can then be set
as a constant at .” and removed from the equation. Since we are trying to solve for the barrel
length with a given plunger size, the equation can be rearranged and simplified to:

lb = D2
plp (.)

This simple equation makes it easy to roughly but quickly size a barrel to a given plunger. The
equation could also be used to size a plunger for a given length barrel. This equation is based on
experimental data and is not perfect. Four is not the golden number. This produces the optimal barrel
length for the situation I was testing. The type of dart, dart-barrel friction, and total system volume will
likely [affect] the optimal ratio. Nevertheless, the above equation can be used as a starting point.

The last paragraph seems to be completely ignored by most people who use this formula. At best it’s a
starting point for further testing. The equation only applies to the FAR as that was all that he tested.

boltsniper later expanded on the restrictions on the use of this formula at NerfHaven [Neb]:

I derived that empirically and more importantly it was derived for the specific situation I
intended on using it for: a plunger weapon. It will not work for a compressed air system. One
of the big factors I used to come up with that was the lack of compressibility. I later factored
that in with a constant that was derived empirically. My tests were with a setup exactly like I was
going to use on [the] finished product. If you scale the system down that magic constant may not hold
true.

There are too many variables to analytically design the optimal barrel length. If you are going to
build or mod a spring gun the equation I provided may be a good starting point. That equation
gives a barrel length that is slightly too long, so to obtain the optimal length you are going to
have to go shorter.

The only real way to do it is experimentally.

Again, the emphasis is my own. The short message is that this equation only applies for the situation he
was testing for.

But does it even apply for that situation? I’d argue no. boltsniper wasn’t testing for optimal barrel length.
In his own words (which I emphasized above), boltsniper’s “goal was to find the barrel length for which
the dart would exit the barrel as the plunger [reached] the end of the plunger tube.” This does not coincide
with when performance peaks based on my understanding of the interior ballistic processes.

Performance is maximized when acceleration slows to zero. If the plunger is at the end of the plunger
tube, the pressure is likely near its peak. This corresponds to near peak acceleration because the force, not
velocity, is near its peak. The ideal barrel length is probably longer in this case.

Also of interest is how he knew the plunger struck the end of the tube when the dart left. I seriously
question how he determined that. The entire process occurs in a fraction of a second. He’d need a high
speed camera with a clear plunger tube and barrel, some other optical system, some acoustic system, some
magnetic system, or something I’m not considering to actually determine this with accuracy.





. Energy efficiency

The energy efficiency of a Nerf gun is defined as the fraction of the input energy that is converted into
muzzle kinetic energy of the dart:

η ≡ muzzle kinetic energy
input energy . (.)

The muzzle energy is T = mdV2
m/2 where md is the dart mass and Vm is the muzzle velocity.

The best pneumatics rarely have energy efficiencies over %, while springers often have efficiencies of
% or more. I suspect this is related to the unused gas left in the gas chamber of a pneumatic — a hybrid
collapsing chamber gun (not unlike the current Nerf guns that use pneumatic cylinders) would combine
the best of both worlds.

The efficiency of a small pneumatic gun I tested ranged from about % to % [Treb], while the efficiency
of a modified Nerf Crossbow was about % [Tre].

.. Overall energy efficiency

The overall energy efficiency is reduced by a combination of effects:

• inefficiencies of the internal ballistic process (ηi),

• energy lost due to heat losses for pneumatics (ηh),

• energy lost due to hysteresis for springers and pneumatics with latex tubing (ηs), and

• energy lost due to pump friction (ηp).

The combination of the last three inefficiencies can be thought of as a charging efficiency (ηc ≡ ηhηsηp).

.. Internal ballistic energy efficiency

The internal ballistic efficiency (ηi) is usually the least efficient part of the gun system.

Ideal gas pneumatics. Start with the work-energy principal and the adiabatic process law PVγ = constant:

E = −
∫ V2

V1

P dV = P1Vγ
1

(
V1−γ

2 − V1−γ
1

γ − 1

)
, (.)

where E is the work into the system (i.e., the input energy).

I define P1 ≡ Patm, P2 ≡ Pc,0, and V2 ≡ Vc where γ is the ratio of specific heats (. for air), Patm is
atmospheric pressure, Pc,0 is the initial gas chamber pressure, and Vc is the gas chamber volume. I also
define P∗

c,0 ≡ Pc,0/Patm, the dimensionless initial gas chamber pressure. Using I can rewrite the input energy
as

E =
PatmVc
γ − 1

[
P∗

c,0 − (P∗
c,0)

1/γ
]

(.)

after algebraic manipulation (best done with a computer to avoid mistakes).

The functional form of the energy efficiency for a pneumatic gun therefore is

η =
(γ − 1)mdV2

m

2PatmVc
[

P∗
c,0 − (P∗

c,0)
1/γ
] . (.)

For non-ideal gases and non-adiabatic compression processes, the math is similar.





Springers. The input energy is E = k(∆x)2/2 where k is the spring stiffness and ∆x is the displacement
of the spring. The functional form of the energy efficiency is therefore

η =
mdV2

m/�2
k(∆x)2/�2

=
mdV2

m
k(∆x)2 . (.)

.. Heat loss efficiency

Gas reservoirs. The primary source of heat loss in a Nerf gun is from the gas reservoir. Due to adiabatic
compression, the gas temperature in a gas reservoir will increase as the compression increases. For constant
ratio of specific heats (γ) this entails

Tc,0

Tatm
=

(
Pc,0

Patm

)(γ−1)/γ

, ρc,0

ρatm
=

(
Pc,0

Patm

)1/γ

. (.)

Maximum energy loss. The gas reservoir will lose some total energy when the temperature is allowed to
equilibrate. The equilibrium occurs when the gas temperature equals the atmospheric temperature. This is
the worst-case scenario, and the associated efficiency, ηr, is easy to calculate.

As the equilibrium occurs, the gas mass density ρ will remain constant as no mass can leave the reservoir, in
this model. More elaborate models could consider the effects of removing mass to fire the gun or perform
other actions. Thus, ρr,0 (where r refers to the gas reservoir) is the same at the equilibrium state. We know
the equilibrium temperature (Tatm), and thus by the ideal gas law we can calculate

Pr,Tatm = ρatm

(
Pr,0

Patm

)1/γ

RTatm = Patm

(
Pr,0

Patm

)1/γ

. (.)

If we define
ηr ≡

ETatm

E0
, (.)

then we can use the definition of E0 (eqn. .) and a similar definition for ETatm (with P = Pr,Tatm) to find ηr.

E0 =
PatmVr
γ − 1

[
P∗

r,0 − (P∗
r,0)

1/γ
]

, (.)

ETatm =
PatmVr
γ − 1

[
P∗

r,Tatm − (P∗
r,Tatm)

1/γ
]

. (.)

After some manipulation of the equations above in the definition of ηr we find that

ηr =
P∗

r,0
1/γ − P∗

r,0
1/γ2

P∗
r,0 − P∗

r,0
1/γ

. (.)

Thus, the fraction of energy lost due to temperature equilibration of the gas reservoir is only a function
of the initial pressures (and ratio of specific heats). This function is plotted below. Note that in the limit
as P∗

r,0 → 1, ηr → 1/γ. This is the best equilibrated efficiency you can get. As a significant fraction of the
energy can be lost, it is worthwhile to investigate how quickly this energy is lost for pneumatic guns with
substantial air reservoirs.

 Neglecting friction, only considering linear springs, and neglecting pre-stressed springs.
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Figure : Worst-case-scenario gas reservoir energy efficiency (ηr) plotted as a function of dimensionless reservoir
pressure, P∗

r,0 ≡ Pr,0/Patm.

Transient simulation. Assuming that the heat transfer occurs with negligible convection and that the air
reservoir is a cylinder with no variation in the axial or θ directions allows us to use a D heat conduction
equation [Inc+, p. ]: 1

r
∂

∂r

(
k r

∂T
∂r

)
= ρcp

∂T
∂t

. (.)

.. Pump friction efficiency

. Valve and contraction models

.. Incompressible flow model

Start with Bernoulli’s principle and the one-dimensional incompressible continuity equation (A1u1 = A2u2).
Note that Cd here is the coefficient of discharge, not the coefficient of drag. Also note that β2 ≡ A2/A1.

1
2 ρu2

1 + P1 = 1
2 ρu2

2 + P2 −→ u2 =

√
2(P2 − P1)

ρ(1 − β2)
(.)

Q = Au (.)

SG ≡ ρ

ρw
(.)

Q = CdA

√
2∆P

SGρw(1 − β2)
(.)
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A2/A1  . . . . . . . . . .
Cc . . . . . . . . . . .

Table : Experimental contraction coefficients for incompressible channel flows.

Most valve manufacturers give a flow coefficient, C∗
v (typically Cv, but C∗

v here to avoid confusion with the
specific heat capacity at constant volume).

C∗
v = CdA

√
2

ρw
−→ Q = C∗

v

√
∆P
SG

(.)

Cd =
C∗

v
A

√
ρw
2

(.)

.. Incompressible contraction flow data

Streeter [Str, p. –] lists contraction coefficients (Cc ≡ Ac/A2) for incompressible channel? flows. A
springer is an example of a nearly-incompressible contraction flow — the gas usually flows from the wide
plunger tube to the thinner barrel.

Calvert [Cal] is a good reference for the basics of contraction flows.

For orifices, similar data can be found in Merritt [Mer, pp. –].

.. Ideal nozzle flow model

Notes about the ideal nozzle flow equation:

• For valves and many orifices, the critical pressure ratio predicted by these equations is far too
high [Bea, p. ].

• These equations were first derived by Saint-Venant and Wantzel [SW].

• Equations like these are derived in Beater [Bea], Blackburn, Reethof, and Shearer [BRS], and
Andersen [And].

Velocity derivation. Euler’s equation for the steady flow of an inviscid compressible flow is below [LR].

u2

2
+
∫ dP

ρ
= constant (.)

Adiabatic process relationships for calorically perfect gases indicate the following is true:

ρ =
P1/γ

C
−→ C =

P1/γ
1
ρ1

(.)

u2

2
+ C

∫ dP
P1/γ

= constant −→ u2
2

2
+

P1/γ
1
ρ1

∫ P2

P1

dP
P1/γ

=
u2

1
2

+
P1/γ

1
ρ1 ��

���*0∫ P1

P1

dP
P1/γ

(.)

u2
2 − u2

1
2

=
P1/γ

1
ρ1

∫ P1

P2

dP
P1/γ

(.)
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After performing the integration, we arrive at the following:

u2
2 − u2

1
2

=
P1/γ

1
ρ1

(γ/(γ − 1))
[

P
γ−1

γ

1 − P
γ−1

γ

2

]
(.)

To find the mass flow rate through an orifice, nozzle, or valve, we need to find the area the gas passes
through, the density of the gas there, and the velocity of the gas there (along with an empirical coefficient
to account for non-idealities). ṁ = CdρtAut (.)

ρt is the density at the throat (thinnest portion) of the orifice, nozzle, or valve. ρt = ρu

(
Pd
Pu

)1/γ

by adiabatic

process relationships.

Assuming that u1 = uu = 0, ut = u2, P1 = Pu, and P2 = Pd we can rewrite the velocity equation.

u2
t

2
=

P1/γ
u
ρu

(γ/(γ − 1))
[

P
γ−1

γ
u − P

γ−1
γ

d

]
(.)

ut =

√
P1/γ

u
ρu

(
2γ

γ − 1

) [
P

γ−1
γ

u − P
γ−1

γ

d

]
(.)

Critical pressure ratio equation.

ut =

√√√√√P1/γ
u
ρu

(
2γ

γ − 1

)
�
�
�
��P

γ−1
γ

u

P
γ−1

γ
u

−
P

γ−1
γ

d

P
γ−1

γ
u

 P
γ−1

γ
u (.)

ρu =
Pu

RTu
(.)

ut =

√√√√RTu

(
2γ

γ − 1

)[
1 −

(
Pd
Pu

) γ−1
γ

]
(.)

ct =
√

γRTt (.)

Mt =
ut
ct

=

√√√√Tu
Tt

(
2

γ − 1

)[
1 −

(
Pd
Pu

) γ−1
γ

]
(.)

Tu
Tt

=

(
Pu
Pd

) γ−1
γ

(.)

Mt =
ut
ct

=

√√√√( 2
γ − 1

)[(
Pu
Pd

) γ−1
γ

− 1

]
(.)

The authors assume that the velocity “chokes” when the throat Mach number equals . This can lead to a
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simple equation for the critical pressure ratio.

1 =

(
2

γ − 1

)[(
Pu
Pd

) γ−1
γ

crit
− 1

]
(.)

γ − 1
2

=

(
Pu
Pd

) γ−1
γ

crit
− 1 (.)(

Pu
Pd

) γ−1
γ

crit
= 1 +

γ − 1
2

=
γ + 1

2
(.)

a =

(
Pd
Pu

)
crit

(.)

b = γ/(γ − 1) (.)

c =
2

γ + 1
(.)

1
a1/b =

1
c
−→ a1/b = c −→

(
a1/b

)b
= cb −→ a = cb (.)(

Pd
Pu

)
crit

=

(
2

γ + 1

)γ/(γ−1)

. (.)

The throat velocity is at the speed of sound whenever Pd
Pu

< b ≡
(

Pd
Pu

)
crit

≡
(

2
γ + 1

)γ/(γ−1)

. For air

b = 0.528.

Unchoked mass flow rate equation. The parts of the mass flow rate equation can be combined to make
an equation for the mass flow rate.

ṁ = Cdρu

(
Pd
Pu

)1/γ

A

√
P1/γ

u
ρu

(
2γ

γ − 1

) [
P

γ−1
γ

u − P
γ−1

γ

d

]
(.)

ṁ = CdA
(

Pd
Pu

)1/γ

√√√√√P1/γ
u ρu

(
2γ

γ − 1

)
�
�
�
��P

γ−1
γ

u

P
γ−1

γ
u

−
P

γ−1
γ

d

P
γ−1

γ
u

 P
γ−1

γ
u (.)

ρu =
Pu

RTu
(.)

ṁ = CdA
(

Pd
Pu

)1/γ

√√√√ P2
u

RTu

(
2γ

γ − 1

)[
1 −

(
Pd
Pu

) γ−1
γ

]
(.)

ṁ = CdAPu

(
Pd
Pu

)1/γ

√√√√ 2γ

RTu(γ − 1)

[
1 −

(
Pd
Pu

) γ−1
γ

]
(.)

Choked mass flow rate equation. ṁ = CdρtAut still applies. But ut = ct =
√

γRTt now.
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ṁ = CdAρu

(
Pd
Pu

)1/γ√
γRTt (.)

Tt
Tu

=

(
Pd
Pu

) γ−1
γ

=

((
2

γ + 1

)γ/(γ−1)
) γ−1

γ

=
2

γ + 1
(.)

ṁ = CdAρu

((
2

γ + 1

)γ/(γ−1)
)1/γ√

2γRTu
γ + 1

(.)

ρu =
Pu

RTu
(.)

ṁ = CdA
Pu

RTu

(
2

γ + 1

) 1
γ−1

√
2γRTu
γ + 1

= CdAPu

(
2

γ + 1

) 1
γ−1

√
γ

RTu

2
γ + 1

(.)

ṁ = CdAPu

(
2

γ + 1

) 1
γ−1+

1
2
√

γ

RTu
= CdAPu

(
2

γ + 1

) 2+γ−1
2(γ−1)

√
γ

RTu
(.)

ṁ = CdAPu

√√√√ γ

RTu

(
2

γ + 1

) γ+1
γ−1

= CdAPu

√√√√ γ

RTu
(

γ+1
2

) γ+1
γ−1

(.)

.. Pneumatic Drives modification of Sanville/ISO- flow model [Bea, p. ]

ṁ =



1000Cρref

√
1 −

(
bl − b
1 − b

)2

if Pd
Pu

> bl (laminar)

PuCρref

√
Tref
Tu

√
1 −

(
Pd/Pu − b

1 − b

)2

if bl >
Pd
Pu

> b (subsonic)

PuCρref

√
Tref
Tu

if b ≥ Pd
Pu

(sonic)

(.)

Beater suggests using bl ≡ 0.999 as an arbitrary selection. A more physical method would use the Reynolds
number as the distinguishing factor for the flow equations. The reference values are

ρref = 1.185 kg/m3 , Tref = 293.15 K . (.)

.. Critical pressure ratio b

The critical pressure ratio equation in the nozzle flow section (eqn. .) is often inaccurate. One explanation
of the inaccuracy is that the maximum flow velocity is sonic, but the average velocity through the valve
is lower. The nozzle flow model does not account for the velocity profile, so this inaccuracy can not be
avoided. Beater [Bea] notes that the critical pressure ratio typically has a value below 0.5. Valves generally
are above 0.2. Some components can have a critical pressure ratio as low as 0. Some valve data sheets list
critical pressure ratios. See Norgen [Nor] for an example for QEVs (listed values are 0.5, 0.45 and 0.4).

Beater [Bea, p. ] cites Gidlund [Gid], who gives the following equation for orifices with a length less
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than  times the diameter of the orifice:

b = 0.41 + 0.272
√

β , β ≡ d
D

(.)

where

d is the diameter of the orifice, and

D is the diameter of the pipe.

Shannak [Sha] suggests the following relationship for orifices:

b =
[
0.014β2 − 0.005β + 0.04

]
γ4 . (.)

That expression is approximately constant for all values of β. Shannak suggests the following approximation:

b = 0.041γ4 . (.)

.. Valve opening

Valves never open instantaneously. A model of the opening process could scale the flow coefficient some
way in time.

.. Forces on interior of valves

.. Converting between flow coefficients

.. Common valve flow units

. Pneumatic gun ballistics

x

ProjectileBarrelValveGas chamber

VdLc

Lb

AbAc

Figure : Some geometric variables and components of the model pneumatic gun.

.. Model pneumatic gun setup

The basic setup for the model gun is shown in figure . This pneumatic gun has a pressurized gas chamber,
a valve, a barrel, and a projectile. The gas chamber, valve, and barrel are connected in series.
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.. Subscripts

The subscript c refers to the gas chamber. The subscript b refers to the barrel. The subscript atm and a
refers to atmospheric conditions.

.. Variables and constants

Variables
Fd [F] Force on the projectile from barrel gas
ṁ [M][T]−1 Valve mass flow rate
Pc [F][L]−2 Chamber gas pressure
Pb [F][L]−2 Barrel gas pressure
ρb [M][L]−3 Barrel gas density
ρc [M][L]−3 Gas chamber gas density
Tb [Θ] Barrel gas temperature
Tc [Θ] Chamber gas temperature
Tu [Θ] Temperature upstream of the valve
x [L] Projectile position referenced against starting position
ẋ [L][T]−1 Projectile velocity
ẍ [L][T]−2 Projectile acceleration

Constants
Ab [L]2 Barrel internal cross-sectional area
Ac [L]2 Chamber internal cross-sectional area
cp [L]2[T]−2[Θ]−1 Specific heat at constant pressure
cv [L]2[T]−2[Θ]−1 Specific heat at constant volume
Lb [L] Barrel length
Lc [L] Chamber length
md [M] Dart mass
Patm [F][L]−2 Atmospheric pressure
Pf [F][L]−2 Pressure of friction
R [L]2[T]−2[Θ]−1 Specific gas constant
Tatm [Θ] Atmospheric temperature
Vc [L]3 Chamber volume (Vc ≡ AcLc)
Vd [L]3 Dead volume

All pressures are absolute. The “pressure of friction” is the total friction force on the projectile divided
by the barrel cross-sectional area, Ab. If you can blow a dart down a barrel with your lungs alone, then
you know the upper limit of the pressure of friction is your maximum lung pressure, which is about
1.4 psi [Dea].

The specific gas constant is not the universal gas constant (R = 8.3145 J/mol/K). The specific gas constant
is defined R ≡ R/M where M is the molecular weight.

.. Equations governing pnuematic guns

Non-dimensionalization
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.. Analytical lumped-parameter model for pneumatics

Major assumptions and simplifications.

• Ideal gas with constant specific heats (a “calorically perfect gas”).

• Velocities involves are “slow”.

– Can treat some stagnation temperatures and pressures as the normal temperatures and pressures.

– Lumped parameter assumption for pressure, density, and temperature.

• The effect of the valve can be represented as a constant ratio between the barrel and gas chamber
pressures.

• Frictionless flow (but friction on the projectile is included)

• Valve is assumed to not store any gas (has zero volume)

• No leaks are present (including leaks around the projectile)

• Air cylinders or other collapsing chambers are not part of the model.

• Phase changes are not part of this model.

• Elevation changes are negligible.

Model derivation. The following equations govern the performance of low-speed pneumatic guns:

Vcρ̇c = −ṁ sgn(Pc − Pb) , (.)

Vc
d
dt
(
ρccvTc

)
= −ṁcpTu sgn(Pc − Pb) , (.)

ṁ = ? , (.)
d
dt
(
ρb[Vd + Abx]

)
= ṁ sgn(Pc − Pb) , (.)

d
dt
(
ρb[Vd + Abx]cvTb

)
= −Fd ẋ + ṁcpTu sgn(Pc − Pb) , (.)

md ẍ = Ab
(

Pb − Patm − Pf(x, ẋ)
)

, (.)
Pi = ρiRTi . (.)

For the valve mass flow rate (ṁ) model, we assume that the barrel and chamber pressure are related by
α(t)Pc = Pb where 0 < α ≤ 1, so Pc ≥ Pb then the sgn functions can be eliminated and Tu = Tc. Also,
Fd ≡ PbAb.

Then, the mass conservation equations can be ignored, leaving us with

Vc
d
dt
(
ρccvTc

)
= −ṁcpTc , (.)

α(t)Pc = Pb , (.)
d
dt
(
ρb[Vd + Abx]cvTb

)
= −PbAb ẋ + ṁcpTc , (.)

md ẍ = Ab
[
Pb − Patm − Pf

]
, (.)

Pi = ρiRTi . (.)

Note that from the ideal gas law ρiTi = Pi/R. Also note that cp − cv = R and cp/cv = γ so cv/R = 1/(γ− 1).
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Combined these state
cvρiTi =

Pi

γ − 1
. (.)

I also define Vb ≡ Vd + Abx, which results in V̇b = Ab ẋ and V̈b = Ab ẍ. Substituting all of these into the
governing equations results in

VcṖc = −(γ − 1)ṁcpTc , (.)

Pc =
1
α

Pb , (.)

d
dt
(PbVb) = −(γ − 1)PbV̇b + (γ − 1)ṁcpTc , (.)
md
A2

b
V̈b = Pb − Patm − Pf . (.)

Substituting eqn. . into the last term of eqn. . and simplifying returns

ṖbVb = −γPbV̇b − VcṖc . (.)

Taking the time derivative of eqn. . returns

Ṗc =
1
α

Ṗb +
α̇

α2 Pb . (.)

Substituting eqn. . into eqn. . and simplifying returns

Ṗb

(
Vb +

Vc
α

)
+ Pb

(
γV̇b +

Vc
α2 α̇

)
= 0 . (.)

Solving eqn. . for the barrel pressure and taking its time derivative leads to

Pb =
md
A2

b
V̈b + Patm + Pf , (.)

Ṗb =
md
A2

b

...
Vb + Ṗf . (.)

These can be substituted into eqn. . to find a differential equation for Vb,(
md
A2

b

...
Vb + Ṗf

)(
Vb +

Vc
α

)
+

(
md
A2

b
V̈b + Patm + Pf

)(
γV̇b +

Vc
α2 α̇

)
= 0 . (.)

To get a reasonably simple exact solution to this equation, we assume α̇ = Ṗf = 0 and non-dimensionalize
with

V∗
b ≡ Vb

AbLb
, τ ≡ t

√
AbPatm
mdLb

, CB ≡ Vc
AbLb

, P∗
i ≡ Pi

Patm
, V∗

d ≡ Vd
AbLb

, (.)

to find (after dropping the superscript * and using Newton’s dot notation for d/dτ)

...
Vb

(
Vb +

CB
α

)
+
(
V̈b + 1 + Pf

)
γV̇b = 0 . (.)
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This can be rewritten and integrated to get a third-order autonomous/time-invariant ordinary differential
equation: ...

Vb
V̈b + 1 + Pf

= −γ
V̇b

Vb +
CB
α

, (.)

A ≡ V̈b + 1 + Pf , B ≡ Vb +
CB
α

, (.)
Ȧ
A

= −γ
Ḃ
B
−→ d log A

dτ
+ γ

d log B
dτ

= 0 −→ log A + log Bγ = log C −→
(
V̈b + 1 + Pf

) (
Vb +

CB
α

)γ

= C

(.)
where C is a constant found from the initial conditions:

Vb(t = 0) = Vd , Pb(t = 0) = V̈b(t = 0) + 1 + Pf(t = 0) = αPc(t = 0) = αPc,0 . (.)

Thus,
C = αPc,0

(
Vd +

CB
α

)γ

, (.)

and (
V̈b + 1 + Pf

) (
Vb +

CB
α

)γ

= αPc,0

(
Vd +

CB
α

)γ

. (.)

This result is noticeably similar to eqn. ., the starting point for the simple ideal barrel length equation.
Better yet, this result can be used to find the ideal barrel length equation for this more general case. For the
ideal case, the projectile stops accelerating, so V̈b = 0. At the end of the barrel, Vb = 1 + Vd, so

(1 + Pf)

(
1 + Vd +

CB
α

)γ

= αPc,0

(
Vd +

CB
α

)γ

, (.)

which can be rewritten as
CB =

α(
αPc,0

1 + Pf

)1/γ

− 1

− Vdα . (.)

Eqn. . and eqn. . are remarkably similar, as they should be. The main difference is the effect of valve
performance (α) to reduce the C:B ratio and that dead space (Vd) reduces the C:B ratio here instead of
increasing it before.

If we define
C ≡ αPc,0(Vd + CB /α)γ , D ≡ Vb +

CB
α

, E ≡ 1 + Pf (.)

then we can write eqn. . as
(D̈ + E)Dγ = C , (.)

and integrate using ẍdx = ẋdẋ where x is any arbitrary variable:

1
2

Ḋ2 = −CD1−γ

γ − 1
− DE + F . (.)

F is an arbitrary constant, which for the initial conditions previously used is

F =

(
Vd +

CB
α

)(
αPc,0

γ − 1
+ 1 + Pf

)
, (.)

 All of this is non-dimensional.
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and thus the dimensionless muzzle velocity (i.e., after setting V∗
b = 1 + V∗

d )

1
2

V̇2
b =

1
2

ẋ2 =
αPc,0

γ − 1

(
Vd +

CB
α

)[
1 −

(
Vd + CB /α

1 + Vd + CB /α

)γ−1
]
− (1 + Pf) , (.)

where I used the fact that V̇b = ẋ in non-dimensional form. Note that the effective pressure is αPc,0 and the
effective C:B ratio is CB /α. This shows how valve performance changes overall performance.

In non-dimensional form, the energy efficiency (from eqn. .) is

η =
(γ − 1)

( 1
2 ẋ2)

CB
[

P∗
c,0 − (P∗

c,0)
1/γ
] . (.)

Plugging the equation for 1
2 ẋ2 into the efficiency equation unfortunately does not seem to result in a

consistent efficiency equation. The efficiency of the ideal C:B ratios with α = 1 and Vd = Pf = 0 are not 1 as
they should be (the process is reversible). Whether this is a mathematical mistake or a true feature of the
model is not clear.

.. Effective initial chamber pressure

The α valve model requires an unphysical initial condition which does not necessarily require that gas
mass and gas energy are equal to their values with less restrictive models. This is because the initial barrel
pressure will not necessarily be atmospheric. If Patm = αPc,0 and/or Vd = 0 then the α valve model is
perfectly correct and mass and energy are consistent. Otherwise, an adjustment needs to be made to
ensure that either the total mass or energy is consistent with its value without the α valve model. Energy
consistency is preferred as η is the focus of this work, and without energy consistency η will not be bounded
between 0 and 1.

Mass consistency. Let the variables with a hat over them refer to the effective state, i.e., P̂c,0 is the effective
pressure. Then by the ideal gas law

mc,0 =
Pc,0Vc
RTc,0

, mb,0 =
Pb,0Vd
RTatm

, (.)

and
m̂c,0 =

P̂c,0Vc
RTc,0

, m̂b,0 =
αP̂c,0Vd
RTatm

. (.)

Setting mc,0 + mb,0 = m̂c,0 + m̂b,0 returns

P̂c,0 =

Pc,0Vc
Tc,0

+
PatmVd

Tatm
Vc
Tc,0

+
αVd
Tatm

. (.)

Energy consistency. The original input energy,

E0 =
PatmVc
γ − 1

[
P∗

c,0 − (P∗
c,0)

1/γ
]

, (.)
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is just chamber input energy as the barrel starts out at atmospheric pressure. Therefore, if we break up the
energy into Êc and Êb where

Êc =
PatmVc
γ − 1

[
P̂∗

c,0 − (P̂∗
c,0)

1/γ
]

, (.)

Êb =
PatmVd
γ − 1

[
αP̂∗

c,0 − (αP̂∗
c,0)

1/γ
]

, (.)

we can solve the implicit equation E0 = Êc + Êb to find P̂∗
c,0.

.



.



.

 . . . . 

P̂
∗ c,

0

α

energy consistent
mass consistent

Figure : Effective pressures for the mass and energy consistent cases for P∗
c,0 = 5 with V∗

d = 0.1 and CB = 0.2.

Compensating for this effect does not help the inconsistency with the α = 1 case as the model is wrong
even with Vd = 0 there too (no compensation is needed for Vd = 0).

Notes about and shortcomings of this analytical model.

• This model predicts that friction universally reduces performance, which is not observed in numerical
simulations. Barrel friction can improve performance slightly. The hypothesized mechanism is static
friction keeping the projectile stationary, allowing the barrel pressure to increase higher because the
projectile has not moved. If the projectile moves prematurely, it increases the barrel volume and thus
decreases the pressure, reducing acceleration. Dart mass and dead volume are hypothesized to have
similar effects as well.

• The valve model prevents proper modeling of the initial state of the gas in the barrel. Consequently,
it is possible for this model to predict energy efficiencies over %. Adjusting Pc,0 to account for this
can solve this problem.

• This model does not differentiate between static and dynamic friction. The friction force is constant
and directed in the negative x direction. Consequently, the projectile will slowly accelerate backwards
at the initial time.

• The strong dependence of dart mass on energy efficiency is not seen in this model. The most likely
explanation for this is that the valve coefficient also contains information about the dart mass.
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• The valve model is not entirely realistic. The pressure ratio Pb/Pc starts out high and will move
towards 1 in most cases.

• The energy efficiency η strongly depends on α — a % change in α results in a change in η of over
%. Worse, α depends strongly on the initial chamber pressure. αP∗

c,0 ≈ constant for P∗
c,0 less than

about  based on available test data [Treb]. This constant of proportionality might be a more useful
“model constant”.

Deriving α from valve flow equations. The ISO valve model for subsonic flow (eqn. .) can be used to
find the precise meaning of α outside of its definition, α ≡ Pb/Pc. The laminar and sonic models are not
captured well by the α model, but at least the α model gets the dynamics qualitatively correct.

.. Computer simulation of pneumatic guns

Numerical simulation approaches can be slightly more complex than the previously detailed analytical
approaches by numerically integrating ODEs. I’ve developed several simulations for pneumatics and
springers. One popular simulation for Windows is GGDT [Hal], which unfortunately uses an outdated
and inaccurate valve model, but is nonetheless accurate enough for general use.

They also can be far more complex and rigorous, taking a computational fluid dynamics (CFD) approach.
Of the different CFD approaches, I plan to try a few:

• the Lagrangian approach developed by LANL much like what Jacobs [Jac] did, or

• an Eulerian approach with moving boundaries.

. Spring gun ballistics

y

x

Projectile

Vd
Lb

Ab

Spring (compressed)

Spring (fully expanded)

Barrel

Piston

Lp

Lt

Ls

Figure : Some geometric variables and components of the model spring gun.
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.. Equations governing spring guns

.. Analytical lumped-parameter model for springers

mpÿ = −k(Ls − Lt + Lp + y) + Ap(Pp − Patm − Pfp) (.)
d
dt
(ApyρpTpcv) = −PpApẏ − ṁcpTu (.)

αPp = Pb (.)
d
dt

[ρb(Vd + Abx)cvTb] = −PbAb ẋ + ṁcpTu (.)

md ẍ = Ab(Pb − Patm − Pfb) (.)
ρiRTi = Pi (.)

Vp ≡ Apy , Vb ≡ Vd + Abx , cvρiTi =
Pi

γ − 1
(.)

�������
V̇pPp + VpṖp + VpṖp = −(γ − �1)PpV̇p − (γ − 1)ṁcpTu (.)

(γ − 1)ṁcpTu = −
[
γPpV̇p + ṖpVp

]
(.)

���PbV̇b + ṖbVb = −(γ − �1)PbV̇b + (γ − 1)ṁcpTu (.)
γPbV̇b + ṖbVb = (γ − 1)ṁcpTu︸ ︷︷ ︸

substitute in eqn. .

(.)

γ(PbV̇b + PpV̇p) + (ṖbVb + ṖpVp) = 0 (.)
(.)

Then, substitute in eqn. .,

γPb

(
V̇b +

1
α

V̇p

)
Ṗb

(
Vb +

1
α

Vp

)
= 0 . (.)

Pp =
mp

A2
p

V̈p +
k

Ap
(Ls − Lt + Lp + y) + Pp − Patm − Pfp (.)

Pb =
md
A2

b
V̈b + Patm + Pfd (.)

CB ≡
ApL

AbLb
, τ ≡ t

√
AbPatm
mdLb

, P∗
i ≡ Pi

Patm
, m∗

p =
mp

md

L0

Lb

Ab
Ap

, k∗ ≡ kL0

PatmAp
, L∗

st ≡
Ls − Lt + Lp

L0

(.)
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Dropping the * superscript and using the dot notation for d/dτ returns

0 = γPb

(
V̇b +

CB
α

V̇p

)
+ Ṗb

(
Vb +

CB
α

Vp

)
, (.)

Pp = mpV̈p + k(Lst + Vp) + 1 + Pfp , (.)
Pb = V̈b + 1 + Pfb . (.)

Integrating eqn. . leads to (
Vb +

CB
α

Vp

)γ

Pb = C (.)

where C is a constant which can be found from the initial conditions

Vb(t = 0) = Vd , Vp(t = 0) = 1 , Pb(t = 0) = α (.)

to be
C = α

(
Vd +

CB
α

)γ

. (.)

And thus
(V̈b + 1 + Pfb)

(
Vb +

CB
α Vp

Vd +
CB
α

)γ

= α . (.)

This equation can be solved to find an ideal C:B ratio equation,

CB = α


1 − Vd

[(
α

1 + Pfd

)1/γ

− 1

]
(

α

1 + Pfd

)1/γ

− Vpf

 , (.)

where Vpf is the volume of the plunger tube when the dart leaves the barrel. This equation is similar to the
ideal C:B ratio equation found earlier from adiabatic process relationships. Unfortunately, Vpf is not known
a-priori. Usually people assume this volume is zero as a first approximation. For the absolutely ideal case,
we expect plunger volume to equal zero when the dart leaves, but for a particular ideal C:B ratio we have
no reason to suspect that is true.

This assumption does not seem to hold based on available high speed footage as seen in figure . The
plunger volume when the dart leaves is not always negligible.

A single ODE for the barrel volume, like in the pneumatic case, can be derived. Use eqn. ., eqn. .,
and eqn. . to find that

α
[
mpV̈p + k(Lst + Vp) + 1 + Pfp

]
= V̈b + 1 + Pfb . (.)

Then solve eqn. . for VP,

Vp =
α

CB

[(
α

V̈b + 1 + Pfb

)1/γ

(Vd + CB /α)− Vb

]
, (.)

differentiate it twice and plug the result into eqn. . to find (after simplification) something that is too
complicated for me to even bother putting here.

This approach does not seem to be tractable.
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Figure : The position of the plunger and (less clearly) the dart in a springer can be seen in this high-speed footage of
a clear springer by ATMATRN [AT]. The top is before firing; the bottom is approximately when the dart leaves
the barrel.

Estimates for the final plunger volume. Two estimates are worth noting. The first, that the plunger
volume is zero when the dart leaves, is probably true for the most ideal of the ideal cases. The second uses
eqn. ., eqn. ., and eqn. . to find the plunger volume when the dart stops accelerating. If we
assume that the plunger stops accelerating and is moving at a constant (or zero) velocity when the dart
leaves that barrel, we can find that

Vpf =
(1 + Pfd)/α − (1 + Pfp)

k
− Lst . (.)

This assumption appears to be approximately satisfied in figure  and is probably reasonable for barrels
that are not too short.

.. Computer simulation of springers

. Dead space

Popular conception is that dead space only decreases performance. This is a good rule of thumb, but it’s
not strictly true. A small amount of dead space helps performance if the flow from the plunger or gas
chamber to the barrel is sufficiently restricted, though the amount is negligibly small.

. Dart-barrel fit and friction

Static friction is usually helpful to performance, and dynamic friction usually hurts performance.
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. Energy budget

. Pump and plunger friction

. Spring hysteresis

. Leaks

.. Around the dart

.. Valve pilot

 External ballistics

In this section I develop a simple analytical model for the trajectory of a Nerf dart and use this model to
find range, “energy efficiency”, and time to reach a target. I use the common “flat-fire” assumption, which
allows for the solution of the ODEs.

The basic equations of external ballistics have remained unsolved in a useful closed form since then were
formulated over 300 years ago. This is not really a major issue in applied math, as you could define the
solution to these equations as some function much like how sin and cos are essentially defined as the
solutions to some simple vibratory differential equations.

Despite the recent media hype, a teenager did not obtain a useful solution [Mat]. He obtained a series
solution. Similar series solutions were obtained far earlier, and series solutions are not particularly useful
as even numerical approximations are easier to use. Here I obtain an algebraic solution to a simplified
approximate set of external ballistic equations that is appropriate to use for Nerf darts.

For more information about basic external ballistic models, I suggest reading the appropriate chapters of
McCoy [McC] and Carlucci and Jacobson [CJ]. My use of the Lambert W function also follows from
the similar external ballistic model of Warburton, Wang, and Burgdörfer [WWB].

. Dart trajectory (small angle approximation)

.. Equations of motion

streamline

stagnation pointCG
CP

Fd

Figure : Front-weighted dart in motion with CP (center of pressure), CG (center of gravity), Fd (drag force vector),
approximate streamlines, and the stagnation point labeled.

For simplicity, I treat the dart as a point mass. This assumption is acceptable for stable darts, that is, darts
that do not continuously overturn. Darts that are sufficiently weighted in the front are expected to be stable,
as I will explain.
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Darts rotate about their center of gravity. In figure  you can see a representation of a dart in motion with
approximate streamlines, which represent the path air particles take. This is a front-weighted dart that
has begun to overturn by rotating around its center of gravity, which is in the front. The air that runs
along the top of the dart applies a drag force in opposition to the velocity of the dart (which is purely to
the right in this figure). As darts rotate about their center of gravity, the back end of the dart will rotate
counter-clockwise until it is on the other side, which is when the process reverses. Damping losses ensure
that this process does not continue indefinitely (it moves smaller angles in each cycle), and eventually the
dart will be traveling straight again.

In short, front-weighted darts have a natural tendency to align themselves with their velocity vector. This
tendency allows the analysis of the system to be simplified considerably as the yaw (the angle the dart
makes with its velocity vector) can be assumed to be zero and thus the dart can be treated as a point mass.

The quadratic law of drag is assumed and written below. The law assumes that the drag force is a function
of the speed of the dart squared. Testing so far indicates that this is a good assumption for Nerf darts as
their drag coefficients are fairly constant under this law.

Fd = − 1
2 ρatmACdv ||v|| (.)

Fd is the drag force vector. ρatm is atmospheric air density, which is approximately 1.28 kg/m3. Cd is the
drag coefficient. A is the cross-sectional area of the dart, which in our case is simply 1

4 πD2 where D is the
diameter of the dart. v is the velocity vector of the dart.

Newton’s second law (below) will be used to determine the accelerations of the dart.

∑ F = ma = Fd − mgj (.)

m is the dart mass. g is acceleration due to Earth’s gravity, which is approximately 9.81 m/s2.

For clarify, the frame of reference will be described. The problem is restricted to a D Cartesian plane. The
x-direction is in the direction the darts are fired. The y-direction is up. The point (0, 0) approximately
coincides with the feet of the shooter. The point (0, h) is precisely where the dart is fired from. h is the
height of the dart when it is fired. R is the range of the dart.

x

y

h

R

r(t) = x(t)i + y(t)j

Figure : The coordinate system and trajectory of the dart.
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r(t) is the trajectory of the dart; is and its time derivatives (velocity v(t) and acceleration a(t)) are written
below.

r = xi + yj −→ v = ẋi + ẏj −→ a = ẍi + ÿj (.)

The speed (length of the velocity vector) is shown below for those unfamiliar with the vector norm notation.
This is also known as the speed.

||v|| =
√

ẋ2 + ẏ2 (.)

All of the above are plugged together to get a vector equation of motion which is decomposed into the x
and y components below.

m(ẍi + ÿj) = − 1
2 ρatmACd(ẋi + ẏj)

√
ẋ2 + ẏ2 − mgj (.)

mẍ = − 1
2 ρatmACd ẋ

√
ẋ2 + ẏ2 (.)

mÿ = − 1
2 ρatmACdẏ

√
ẋ2 + ẏ2 − mg (.)

To simplify the math, a constant K is defined.

K ≡ ρatmACd
2m

(.)

ẍ = −Kẋ
√

ẋ2 + ẏ2 (.)

ÿ = −Kẏ
√

ẋ2 + ẏ2 − g (.)

The equations above are the governing differential equations of the motion of a point mass with quadratic
drag.

.. Initial conditions

At time t = 0, the dart has a velocity v(0) = V0(cos θ i + sin θ j) where θ is the firing angle above flat. V0 is
the muzzle velocity of the gun. This equation means that ẋ(0) = V0 cos θ and ẏ(0) = V0 sin θ. Also, the
location of the dart at time t = 0 is r(t) = hj. This means that x(0) = 0 and y(0) = h.

.. “Flat fire” approximation

The simplification. The problem with equations of motion (equations . and .) is that they are a
system of non-linear coupled ordinary differential equations. Some solutions are known, but they generally
are given in terms of integrals rather than so-called “elementary functions.” As they are integrals with no
known analytical solution, they are generally worth no more than a numerical solution. But I do not want a
numerical solution, so I must make a simplification to the system if I intend to solve it.

The speed of the dart, ||v||, is dominated by ẋ. If fired flat, the dart moves far faster (and farther in distance)
in the x-direction. Is approximating ||v|| =

√
ẋ2 + ẏ2 by ẋ a good approximation? It is, of course, or else I

would not mention it, but how good of an approximation is it?
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Upper bound of ẏ. To determine how good of an approximation my change is, I must find an upper
bound for ẏ. The case without drag is always faster than the case with drag. So I will find the maximum
y-velocity without drag.

I start with the acceleration in the y-direction without drag. I integrate this and apply the same initial
conditions I mentioned earlier.

ÿnd = −g −→ ẏnd = −gt + C1 −→ ẏnd(0) = 0 = C1 (.)

ynd(t) = − gt2

2
+ C2 −→ ynd(0) = h = C2 −→ ynd(t) = h − gt2

2
(.)

(.)

The maximum y-velocity occurs right before the dart hits the ground. So I will find the time of the impact.
The subscript “i,nd” means impact, no drag here.

ynd(ti,nd) = 0 −→
gt2

i,nd
2

= h −→ ti,nd =

√
2h
g

(.)

With the impact time now known, I can plug the time into the velocity equation to get the maximum
velocity and square it to find the upper bound of ẏ2.

ẏ(ti,nd) = −g

√
2h
g

= −
√

2gh −→ ẏ2 ≤ 2gh (.)

A tall man would hold his gun at approximately a height of 2 m off the ground. This means that ẏ ≤ 6.3 m/s.

Error committed through approximation. What are the limits of this approximation’s validity? I will
define the error and calculate what value of ẋ attains a % and % error.

e ≡
∣∣∣∣∣1 − ẋ√

ẋ2 + ẏ2

∣∣∣∣∣ = 1 − ẋ√
ẋ2 + 39.226

(.)

This leads to a % error in the speed term when ẋ = 19.05 m/s (62.5 ft/s) and a % error when ẋ = 7.10 m/s
(23.3 ft/s). These velocities are quite low, and they will not be seen even at the ends of most trajectories
unless the effects of drag are very significant. And even then, as this term would only have a significant
error for part of the shot, this approximation may still be acceptable overall.

Consequently, this approximation is perfectly acceptable as long as we make sure that the x-velocity
remains within the acceptable bounds. If there are any questions about whether or not this approximation
is acceptable, a numerical solution of the full ODEs (equations . and .) can also be checked.

Simplified equations of motion.

ẍ = −Kẋ2 (.)
ÿ = −Kẋẏ − g (.)

The equations of motion are now uncoupled. Eqn. . is still a non-linear ODE, but eqn. . is a linear
ODE after the solution for ẋ is substituted in. The exact solution for these equations can be found.
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.. Solution for ẋ(t) and x(t)

After some searching, I found a change of variables that reduced eqn. . to a first-order ODE.

z ≡ ẋ2 −→ ż = 2ẋẍ −→ ẍ =
ż

2ẋ
=

ż
2
√

z
(.)

I then substituted in the old variables in terms of the new variables to get a new ODE that I can solve. I
then proceeded to solve this ODE.

ż
2
√

z
= −Kz −→ ż = −2Kz3/2 −→ z−3/2 = −Kdt −→ z−1/2

− 1
2

= −2kt − 2C1 (.)

z−1/2 = K + C1 −→ z−1/2 = (ẋ2)−1/2 =
1
ẋ
= Kt + C1 −→ ẋ =

1
Kt + C1

(.)

Now I apply the IC ẋ(0) = V0 cos θ, rearrange the solution for ẋ and integrate it and apply the IC x(0) = 0
to get the solution for x.

ẋ(t) =
V0 cos θ

V0 cos θ Kt + 1
(.)

x(t) =
log(V0 cos θ Kt + 1)

K
+ C2 (.)

x(0) =
�
�
��>

0
log(1)

K
+ C2 = 0 (.)

x(t) =
log(V0 cos θ Kt + 1)

K
(.)

Proof of equivalence with dragless case. Some readers might wonder how eqn. . for x can possibly
be equivalent to the no-drag case as K goes to zero. ẋ and ẍ more obviously reduce to the no-drag equations
as K → 0. The check for x relies on the Taylor series for the natural log.

log(1 + z) =
∞

∑
n=1

(−1)n+1

n
zn , |z| ≤ 1 (.)

Using z = V0 cos θ Kt allows us to check this directly.

lim
Cd→0

x(t) = lim
K→0

x(t) = lim
K→0

1
K

∞

∑
n=1

(−1)n+1

n
(V0 cos θ Kt)n , |V0 cos θ Kt| ≤ 1 (.)

= lim
K→0

V0 cos θ�Kt
�K

+

���������������:0
1
K

∞

∑
n=2

(−1)n+1

n
(V0 cos θ Kt)n = V0 cos θ t X (.)

The sum from  to ∞ is zero because every term contains K. The result is precisely what is expected without
drag—a constant velocity. This is because there is no way for the dart to slow down. Thus, the equations
for x and ẋ are perfectly consistent with the no-drag case.
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.. Solution for ẏ(t) and y(t)

Eqn. . can be rewritten as follows with the expression for ẋ substituted in. I define A ≡ V0 cos θ K to
simplify the equation slightly.

ÿ =
−Aẏ

At + 1
− g (.)

I use the change of variables ξ ≡ log(At + 1) and change the ODE above to one that can be directly
integrated. The subscript here represents differentiation with respect to the variable in the subscript. Two
subscripts is double differentiation.

ξ = log(At + 1) −→ ξt =
A

At + 1
−→ ξtt =

−A2

(At + 1)2 (.)

yt = yξξt −→ ytt = (yξξt)t = yξξ(ξt)
2 + yξξtt (.)

The ODE can now be rewritten in terms of the new replacement for t, ξ. Note that eξ = At + 1.

yξξ(ξt)
2 + yξξtt = − A

At + 1
yξξy − g (.)

yξξ

(
A

At + 1

)2

−
��

���
��

yξ

(
A

At + 1

)2

= −
��

���
��

yξ

(
A

At + 1

)2

− g (.)

yξξ = −g
(

At + 1
A

)2

= − g
A2 e2ξ (.)

This equation can be directly integrated. It solution and the conversion back to t is below.

y(ξ) = − g
4A2 e2ξ + Bξ + C (.)

y(t) = − g(At + 1)2

4A2 + B log(At + 1) + C (.)

Now I apply the ICs y(0) = h and ẏ(0) = V0 sin θ.

y(0) = − g
4A2 + C = h −→ C = h +

g
4A2 (.)

ẏ =
−g(At + 1)

2A
+

BA
At + 1

(.)

ẏ(0) = V0 sin θ = − g
2A

+ BA −→ B =
g

2A2 +
tan θ

K
(.)

This leads to the following solution.

 Despite the fact that as A → 0 here ξ will no longer change as t changes, the change of variables still arrives at the correct solution
for no drag.
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y(t) = h +
g

4A2 +

[
g

2A2 +
tan θ

K

]
log(At + 1)− g(At + 1)2

4A2 (.)

This simplifies to the following equation.

y(t) = h +

[
g

2(KV0 cos θ)2 +
tan θ

K

]
log(KV0 cos θ t + 1)− gt2

4
− gt

2KV0 cos θ
(.)

.. Equation for range

Implicit analytical solution for R. Note that eqn. . can be rewritten with eqn. . as the following.

y(t) = h +

[
g

2(KV0 cos θ)2 +
tan θ

K

]
Kx(t)− gt2

4
− gt

2KV0 cos θ
(.)

This will allow me solve for ti, the time of impact with the ground. If I had not eliminated the logarithm,
this time would have to be found numerically; no explicit algebraic solution in elementary functions would
exist. Once this time is found, it can be substituted into eqn. . to find the range.

By definition, x(ti) = R and y(ti) = 0. When these are substituted into the equation above, I get the
following.

0 = h +

[
g

2(KV0 cos θ)2 +
tan θ

K

]
KR −

gt2
i

4
− gti

2KV0 cos θ
(.)

This can be solved for ti with the quadratic formula. The correct solution is below. The other solution is
negative and consequently non-physical.

ti =

√
2KR +

4(KV0 cos θ)2(h + R tan θ)

g
+ 1 − 1

KV0 cos θ
(.)

This equation can be rearranged into a form that is easily substituted into eqn. ..

V0K cos θ ti + 1 =

√
4(KV0 cos θ)2(h + R tan θ)

g
+ 2KR + 1 (.)

x(ti) = R =
log(V0K cos θ t + 1)

K
(.)

This leads to the following implicit equation for R.

2KR = log
(

4(KV0 cos θ)2(h + R tan θ)

g
+ 2KR + 1

)
(.)

A new parameter called β is now defined along with the Froude number, Fr.

β ≡ 4h(KV0)2

g
≡ h

g

(
ρatmCdAV0

m

)2

, Fr ≡ V2
0

gh
(.)

As will be explained, β is very important for the flat-fire case. β tells you how much drag affects your darts,
but here it also controls the range. The Froude number controls the relative effect of gravity on the dart.
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.. Range energy efficiency ηr

Motivation and definition. How much of the kinetic energy put into the dart is actually used to get the
range it does? A certain amount is wasted by drag—the remainder is what is used. Energy efficiency is
essentially “what you get” divided by “what you pay”. Darts “get” the result of the no drag case but pay
more kinetic energy. Consequently, I define what I call “range energy efficiency”: ηr ≡ Tnd/T.

Tnd is the kinetic energy that would have been required to achieve a range R without drag (this makes the
muzzle velocity V0 lower—m is unchanged) fired flat. This, again, is basically what you get out of shooting a
dart. T, on the other hand, is what you pay—the actual kinetic energy of the dart. The fired flat part is
important, as it is necessary for simplicity (fired at the optimal angle can not be found analytically).

What is the muzzle velocity required to get a range R without drag? What is the kinetic energy required?
And what is the kinetic energy required with drag?

R = xnd(ti,nd) = V0,ndti,nd = V0,nd

√
2h
g

−→ V2
0,nd =

gR2

2h
(.)

Tnd =
1
2

mV2
0,nd =

mgR2

4h
(.)

T =
1
2

mV2
0 (.)

Now I substitute the above into the definition of ηr to find a more useful form of it:

ηr =
1
4 (mgR2)/h

1
2 mV2

0
≡ gR2

2hV2
0

. (.)

This is the new definition for ηr in the flat-fire case.

Implicit analytical solution for ηr. The new definition of ηr can be solved for R and substituted into
eqn. . to find an implicit equation for ηr.

R = V0

√
2hηr

g
(.)

2KV0

√
2hηr

g
= log

(
4h(KV0)2

g
+ 2KV0

√
2hηr

g
+ 1

)
(.)

This leads to a relatively simple implicit equation for ηr as a function of β. Note that ηr is a function of only
three parameters (β, Fr, and θ), and only one parameter (β) when θ = 0. A functional form this simple is
not what I would have expected from dimensional analysis alone.√

2βηr = log
[

β(1 +
√

2 Fr ηr tan θ) +
√

2βηr + 1
]

(.)

The range efficiency ηr is plotted for a wide variety of βs typical for Nerf below for θ = 0.

Explicit exact solutions. The Lambert W function can be used to write an explicit solution for ηr assuming
that θ = 0. Warburton, Wang, and Burgdörfer [WWB] derived a similar expression for small angles
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Figure : Range efficiency, ηr, as a function of β for θ = 0. Note that because θ = 0, this plot is bounded between 0 and
1 in ηr.

without a starting height. Including both angles and a starting height does not seem to be possible to get
an explicit exact solution. The lower branch of the W function is the physical branch.

The Lambert W function is defined as the W that satisfies

z = W(z) exp W(z) . (.)

The task here is to put eqn. . into this form to find W.

Raise e to the power of eqn. .,
e
√

2βηr = β + 1 +
√

2βηr . (.)

Now define A ≡ β + 1 , B ≡
√

2βηr , (.)

and substitute into eqn. . to find

eB = A + B −→ eAeB = eA+B = eA(A + B) −→ −e−A = −(A + B)e−(A+B) , (.)

which implies W[−e−A] = −(A + B) −→ B = −W[−e−A]− A . (.)

Rewriting the result above returns

ηr =
(W[− exp(−β − 1)] + β + 1)2

2β
. (.)

Conclusions for design. ηr tells you how much drag affects your dart. Note how quickly ηr drops as β

increases. This shows that an enormous amount of energy is lost due to drag and this translates into a
significant reduction in range. Thankfully, it’s not just drag coefficient alone that matters—I can go through
each variable and explain how we can increase range or range efficiency (to decrease required energy to
prime a blaster).
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We have little to no control over the firing height (h), gravitational acceleration (g), or atmospheric air
density (ρatm). Consequently, we shouldn’t focus on changing these variables.

This relationship does show us that lower drag darts (as measured by CdA) do have longer ranges. This, of
course, is no surprise. We should possibly investigate smaller diameter darts and definitely investigate
lower drag coefficient darts.

What is surprising, however, is that the ratio of muzzle velocity to dart mass (V0/m) can be reduced to
improve range. No one tries to manipulate this parameter in Nerf guns, and these results indicate that
people should reduce this parameter to improve range. Keep in mind that very slow darts are unlikely to
be useful in a Nerf war. Perhaps the take-home message should be that if you keep kinetic energy constant
and reduce V0/m, range will probably increase.

Range ratio ψr. Some readers might have thought of my choice for “range efficiency” was unusual. “The
actual ranges are what matters” is what someone might claim. They might propose a new measure of
how efficient a firing configuration is that I’ll call the range ratio: ψr ≡ R/Rnd. R is the range with muzzle
velocity V0 and drag. Rnd is the range with muzzle velocity V0 and no drag. Rnd is always greater than
or equal to R because darts without drag travel further. So ψr ≤ 1 and ψr tells us how much of the total
possible range our dart is reaching.

How is this measure of efficiency different? It’s not—up to a difference in the power, at least. Below I’ll
calculate the range without drag and plug this into the definition for ψr to show that ψ2

r ≡ ηr.

Rnd = xnd(ti,nd) = V0ti,nd = V0

√
2h
g

(.)

ψr ≡
R

Rnd
=

√
g

2h
R
V0

=

√
gR2

2hV2
0

=
√

ηr (.)

With the idea of the range ratio in mind, the actual range can be calculated for any system where ηr (or
equivalently, ψr) is known by the definition of ψr and its relationship to ηr.

R = V0

√
2hηr

g
= V0ψr

√
2h
g

(.)

Whether to prefer ηr or ψr is a matter of personal preference.

The explicit solution for ψr is
ψr = −W[− exp(−β − 1)] + β + 1√

2β
(.)

.. Estimating muzzle velocity from range

. Drag coefficient of a Nerf dart

Beaver [Bea] did some external ballistic tests with homemade Nerf darts (dart length was 1.25 in). Analysis
of his data indicated that the drag coefficient of a Nerf dart is on average 0.67 ± 0.029, consistent with the
data compiled Hoerner [Hoe, p. –], shown in figure .

Earlier tests I did [Trea] indicated a far lower drag coefficient, but these tests likely were not actually fired
flat. Beaver [Bea] used a level to ensure his barrel was flat during firing.
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Figure : The drag coefficient of blunt nose and streamlined cylinders as a function of length divided by diameter as
compiled by Hoerner [Hoe, p. –].

. Time to target

The time to target is how long a dart takes to reach its target distance. This result thusfar has not been
considered at all in Nerf gun design, yet it is probably one of the most important.

The time to target, tt can be found from eqn. .:

x(t) =
log(V0Kt + 1)

K
. (.)

If we define Rt as the target range we can find that

tt =
exp(KRt)− 1

V0K
. (.)

Eqn. . is the time it takes a Nerf dart to reach a target a distance of Rt away if it is fired straight at it with
minimal affects from gravity.

KED limits. If you have a set KED limit, you can derive an equation for the time to target as a function of
dart mass:

tt =
8

ρatmd3Cd

√
2

E′′
k

(md
π

)3/2
[

exp
(

πρatm
8

d2CdRt
md

)
− 1
]

. (.)

The idea here is to choose the dart mass that allows the time to target to be shorter than someone’s response
time, which the sum of reaction time and movement time. If the time to target is shorter than this time, and if
you aim well, you guarantee a hit. The average reaction time is about 190 ms [wikipedia_contributors_mental_????
]. You can estimate the movement time by estimating an average distance someone needs to move to miss
your dart (about 20 cm seems reasonable) and the average speed they move at (4.5 m/s might be a good
upper bound).

Figure  shows the time to target of a typical Nerf dart as a function of dart mass if the KED limit is
10 mJ/mm2 and you are aiming for a target 9 m away.

Rate of fire and your firing accuracy.

. Optimal firing angle

The “optimal” firing angle maximizes range.
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Figure : Time to target as a function of dart mass for a particular case.

.. Case without drag

An implicit algebraic equation for the optimal firing angle (i.e., the angle which maximizes range) without
drag can be found. While not directly applicable to most ballistics problems, this result is useful for
understanding what affects the optimal firing angle. The initial conditions and governing equations are

ẍ = 0 , (.)
ÿ = −g , (.)

x(0) = 0 , (.)
y(0) = h , (.)
ẋ(0) = V0 cos θ , (.)
ẏ(0) = V0 sin θ , (.)

where h is the starting height of the projectile, V0 is the muzzle velocity, and θ is the firing angle above flat.

The solution of these equations is

x = V0 cos θ t , (.)
y = V0 sin θ t − 1

2 gt2 + h . (.)

The range is defined as where the projectile hits the ground, hence where y = 0. Thus,

0 = − 1
2 gt2

impact + V0 sin θ timpact + h , (.)

which can be solved for timpact to find

timpact =
V0 sin θ +

√
V2

0 sin2 θ + 2gh

g
. (.)
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The range is found by substituting this time into the equation for x which leads to

R∗ ≡ R g
V2

0
= cos θ

(
sin θ +

√
sin2 θ + 2/Fr

)
, (.)

where Fr is the Froude number, Fr ≡ V2
0 /(gh).

The optimal firing angle is found by differentiating the equation above with respect to θ, leading to

0 = cos2 θ

(
sin θ√

sin2 θ + 2/Fr
+ 1

)
− sin θ

(√
sin2 θ + 2/Fr + sin θ

)
. (.)

This equation can be solved numerically to find the optimal firing angle. This angle is plotted in figure 
as a function of the Froude number. As shown, the angle approaches 45° as Fr increases.
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Figure : Optimal firing angle as a function of Froude number for the dragless case.

.. Case with drag

. Accuracy and precision

Difference between accuracy and precision. Accuracy and precision are related concepts that are often
confused. Accuracy is generally how close a measurement is to the true value, or in our case how close a
dart lands to the intended target. Precision is the spread of the measurement, or in this case, the spread of
multiple firings of darts.

.. Accuracy and precision

What is most central to accuracy and precision is repeatability. We want the trajectories to be as consistent
as possible between shots. Consequently, we’ll be looking to eliminate sources of variation.

Dart stability seems to be necessary for high accuracy and high precision. Stability here refers to resistance
against overturning or perhaps even fishtailing. If a dart overturns of fishtails significantly, it is subject
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to aerodynamic forces that are inconsistent from shot to shot, so the accuracy and precision are affected
greatly. The range is generally also very significantly affected.

We know that front-weighted darts have their center of gravity far in front of the center of pressure (where
the net aerodynamic forces act), and this leads to stable darts. The darts rotate about their center of gravity,
so when the center of gravity is basically at the tip of the dart, the dart basically can only move the length of
the dart into the air stream. This applies a force that will rotate the dart back until it is parallel to the flow.
This is why front-weighted darts are stable. If they started to become unstable, they’d correct themselves.

There are many other sources of variation that are worth looking in to. We want to ensure that darts are
consistent. A few things to keep consistent: dart masses, weight distributions, and drag characteristics. The
weight distribution can be kept consistent by using the same materials for all darts and carefully positioning
and sizing all of the dart materials. The drag characteristics basically are shape of the dart; we don’t want
some darts to be bent, have different tips, have hot glue sticking off one end for some darts, etc. Here’s the
short version: making better and more consistent darts will help accuracy and precision.

Another source of variation is muzzle velocity. If your gun shoots strong on one shot and weak on the next,
then obviously where you aimed for the first shot is probably not where your dart will land for the second.
Muzzle velocity can be made more consistent by identifying sources of variation in the gun-dart system.
Dart mass must be kept consistent here again. If a valve is used, it’s better to use a piloted valve as they
open basically instantaneously and the time to open is relatively independent of how quickly the user pulls
the trigger. If a spring gun is being engineered, try to design the system to make the catch release at the
same rate regardless of how quickly the user pulls the trigger. I could go on; you get the idea.

The actual dart mass is also important in addition to its consistency. Heavier darts are more resistant to
wind and other transient forces that will push your darts off course. This, unfortunately, conflicts with
some people’s safety guidelines, but perhaps those guidelines can change in the future.

The actual muzzle velocity is also important for similar reasons. Higher muzzle velocities can lead to lower
transit time (the time from leaving the barrel until hitting the target) for the dart, which should reduce the
total impulse applied to the dart from transient forces like wind. And as we know, lower impulses mean
lower changes in momentum, which means the dart will be more on target. Of course, the muzzle velocities
could increase so much that drag causes the transit time to increase. I think this is an area where we
need to do some testing before figuring out what works well. Increasing muzzle velocity could potentially
counteract some of the limitations in accuracy and precision seen with dart mass restrictions.

Aerodynamic darts might be more accuracy or precise. More aerodynamic darts can maintain their speed
better than other darts, so their transit time is reduced, which should reduce the total perturbative impulse
(as previously mentioned) from wind, etc., that will push them off course.

The Spud Wiki’s page on spudgun accuracy [Spub] notes that barrel vibrations can cause inaccuracies. I
recall this being mentioned on some real gun ballistics websites too. I’m not too sure how significant this
effect is for Nerf, but it might be more pronounced for more flexible barrel materials like PETG. A few tests
to see if the barrel stiffness (the product of the modulus of elasticity and the second moment of area) has
an effect on accuracy seem to be justified. There is a table listing the stiffnesses of some common barrel
materials in the materials section of this document.

A number of other things on the gun can be changed to improve accuracy and precision. Sights are an
obvious addition. Simple iron sights are plenty adequate for most Nerf guns, though, I am intrigued by the
possibility of using ladder sights with angled shots. The sight radius, the distance between the front and
back sights [Sho], can also be increased to allow you to be more precise when aiming. Longer sight radii
make aiming errors more noticeable.

Extra air shot out of the barrel when the dart leaves the barrel is called muzzle blast. If the air is slightly
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unbalanced (and it will be due to turbulence), this could have a negative effect on accuracy and precision
because the tail of the dart will be bumped. This could cause what is called “fishtailing”. Porting is one way
to avoid this problem [Wik]. Another way is to use barrels that are just long enough for the dart to leave
without excess gas escaping. Thankfully, this coincides with the barrel length that maximizes performance
(for low-speed guns, at least), so using the optimal barrel length can improve accuracy and precision.

Barrel length brings to mind another item in the myth category along with rifling for Nerf. Some people
seem to think that longer barrels somehow make things more accurate or precise. This is probably true
to some degree, that is, barrels that are shorter than the dart probably aren’t very accurate. Some people
seem to think that constraining the darts to move in a straight line helps somehow. But this is based on a
poor understanding of Newtonian mechanics. When the dart leaves, it’s a ballistic projectile. Where it was
in the past is irrelevant; the conditions when it leaves are all that matters.

Once the barrel is long enough, then its length does not influence accuracy or precision unless increases in
length change the sight radius, vibration characteristics (i.e., natural frequency) of the barrel, muzzle blast,
etc. And it’s obvious that longer is not always better here.

.. Summary of ways to improve accuracy and precision

• Front-weight darts to make them stable.

• Make darts consistently. Keep the shape consistent. Keep the mass consistent (and measure it to
check).

• Make darts well.

• Use more aerodynamic darts.

• Use systems that remove human variation from the gun, like piloted valve systems (i.e. “backpressure
tanks”).

• Increase the dart mass.

• Increase the muzzle velocity.

• Use a stiff barrel.

• Use a sight.

• Use the barrel length that maximizes performance.

Safety, efficiency, and other concerns may prevent satisfying all of these ways to improve accuracy and
precision.

. Center of gravity

. Center of pressure

. Side wind

. Dart stability

. Muzzle blast

.. Why rifling does not help Nerf darts

Some Nerfers have proposed that rifled barrels may be beneficial for Nerf blasters by making an analogy
with real guns. But is this true? I will examine the two most popular claimed benefits of rifling, that rifling
increases range and improves accuracy, and conclude that rifling as implemented thus far has had no
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significant effect on range or accuracy and it is not likely to have any effect for weighted darts under any
circumstances.

First, the reader must realize that these claims are made most often without any backing. The hypothesis
that rifling improves accuracy or range is often made based on misunderstandings of what rifling does.
Spinning projectiles do not have less drag. Projectiles are spun to improve stability, as I will explain.

Stability of projectiles. A projectile is stable if it flights straight without overturning. This is desirable as
the overturning motion reduces accuracy and range.

Rifling is used to improve the stability of a projectile’s flight. But can the stability of a Nerf dart be
improved? In general, the answer is no because Nerf darts get their stability from static rather than dynamic
characteristics of the dart.

The simplest way to make a stable projectile is to put the center of gravity far in front of the center of
pressure. Details as to why this is stable will be added later. Most Nerf darts get their stability in this way;
this is why darts are weighted at their nose.

But, most real bullets are made of a single material and they do not have this desirable weight distribution.
Spinning the bullet around its longitudinal axis (as rifling does) can stabilize bullets in this case.

So, by simple examination of the mechanisms involved, we can conclude that rifling won’t have any
significant effect on darts with the right weight distribution. Those darts are already very aerodynamically
stable. There is no reason to rifle as there will not be any real benefit.

Some benefit from rifling seems plausible for very light darts that do not have the right weight distribution.
But this is not an argument for rifling necessarily; adding weight to the front is by far the easiest way to
stabilize these projectiles. However, this may not seem to be an acceptable choice for some Nerfers. Very
lightweight darts may be desirable for safety reasons, however, there are other ways to improve safety of a
dart (like reducing the muzzle velocity) that are far simpler than rifling.

Potential disadvantages of rifling There are many potentially significant disadvantages to rifling that
most proponents of the idea are unaware of. I detail the disadvantages that come to mind below.

• Increased friction — If done poorly, the rifling could increase friction in the barrel and potentially
reduce performance as a consequence.

• Leaks around projectile — If done poorly, the rifling grooves could allow for air to leak around the
projectile, reducing performance.

• Increased complexity of building — Smoothbore barrels are simpler.

• Less translational KE — To have a spinning dart, some of the energy that would have been put into
translational kinetic energy and have contributed to range is instead put into rotational kinetic energy.
Rifling is beneficial when this trade-off improves stability such that range or accuracy is improved
satisfactorily. However, the reduction in translational KE may not be acceptable in all cases.

• Reduction of stability — Poorly made darts may not have their weight distributed evenly around the
longitudinal axis of the dart. Spinning could destabilize these darts and reduce range and accuracy.

Examining the accuracy claim with data. In , a Nerfer who went by the handle Landru did some
tests to see what effect spinning a dart had on accuracy [Lan]. He used a setup with a spinning barrel.
He believed that this spinning barrel provides a way to control the spinning without making multiple
rifled barrels. The test did not address rifling directly, rather, it addressed the question of whether spinning
darts could even improve accuracy.
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Landru posted some data that he claimed showed that the standard deviation of the locations of darts spun
at  RPM was lower than that from no spinning.

However, Landru neglected any sort of statistical analysis. I made a brief post that demonstrated his
methods were flawed. I used an f -test to see whether there was any statistically significant difference
between the two groups. Assuming a sample size of 20, I found critical f -values of 0.46 and 2.12 for α =

%. The f -value of was 1.49. As this was between the critical values, the differences were not statistically
significant and consequently we can not determine if they were due to the rifling or random chance.

Landru made no follow-up tests.

Examining the range claim with data. Back in perhaps , a Nerfer who went by the handle Vassili
tested rifled PETG barrels [Vas]. He found that the average range of rifled PETG was higher than that
of smoothbore PETG. Thankfully, Vassili didn’t claim rifling improved range directly. He only offered a
tautology: “When it worked, it worked.” But did it work? Can we attribute any of the differences to the
rifling and not random chance?

No, we can not. A t-test suggests the two data sets are statistically the same at the α = % level. The critical
t-value is 2.65. The t-value of the test for the mean is 1.21. As this is within the bounds we would expect at
the % level of error, we can confidently state that rifling did not increase range in this case.

However, it can be shown that rifling increases the standard deviation of the range with an f -test (data to
be added later). This should lead to a decrease in precision due to a decrease in repeatability (each shot is
more variable). It also shows that more shots will have lower range with rifling. These two disadvantages
are significant.

Further, it is unknown whether these shots were angled and if so, whether the angle was kept constant. If
Vassili was simplying eye-balling the angle, this is another reason to doubt the results.

Conclusion. Based on the implausibility of the explanation for the benefit for rifling and the lack of
evidence to suggest that rifling provides any benefit for Nerf darts, I conclude that rifling is ineffective at
best and harmful at worst for Nerf.

Particularly light Nerf darts could potentially benefit from spinning, however, this has not been shown to
date, and there is no convincing reason not to front weight them instead.
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. Alternative ammo

 Design

. Turrets

. Sights

. Ergonomics

. Pumps

. Darts

 Materials

. Nerf gun material failure case studies

. Fracture mechanics

. Fatigue

. Buckling

. Adhesives

. Impact design

. Stress concentrators

. Barrels

In this section I summarize many important material properties and characteristics of barrel materials. For
the moment I focus solely on the barrels with diameters of about 0.53 in because these are the most popular.

Material part # price OD ID ρ E σy Urt EI ρAc δ Pcr
/ft (in) (in) (lb/in3) (psi) (psi) (lb/in) (lb in2) (lb/ft) (in) (lb)

CPVC (sch. , /”) K . . . . 0.36 × 106  . . . . .
PVC (sch. , /”) K . . . . 0.42 × 106  . . . . .
PETG (thick wall) T . . . . 0.3 × 106  . . . . .
Aluminum (-T) T . . . . 10.4 × 106  . . . . .
Aluminum () T . . . . 10.4 × 106  . . . . .
Aluminum (-T) K . . . . 10.4 × 106  . . . . .
Brass () K . . . . 16 × 106  . . . . .
Carbon steel K . . . . 30 × 106  . . . . .
Copper () K . . . . 17.5 × 106  . . . . .
Stainless steel () K . . . . 27.5 × 106  . . . . .

.. What the table means

Part # refers to the material’s product number at McMaster-Carr.

OD is the outer diameter of the tubing.

ID is the inner diameter.

 Little information about this steel was provided so a weak carbon steel’s data was used. This may not be accurate, though, few’ll
care because steel is a very uncommon barrel material.
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ρ is the density of the material.

E is the modulus of elasticity of the material. This is a measure of how easily the material deforms. Higher
numbers deform less for a certain load.

σy is the yield strength of the material. This is the amount of stress the material can take before permanently
deforming.

EI is the modulus of elasticity multiplied by the area moment of inertia of the tube. This describes how
stiff the tube is. A stiff tube can not be bent easily. Stiffer tubes are more resistant to bending from their
own weight and being struck. They also are resistant to vibration, which does reduce accuracy in firearms
but probably has no effect in Nerf.

Ur is called the modulus of resilience. It represents how much energy the material can absorb per unit
volume before permanent deformation occurs. Because the modulus of resilience depends solely on the
material properties and not the geometry, it is multiplied by the tube thickness so that comparisons of how
easily dented the materials are can be made.

To determine if the material will at least yield from being struck, find the kinetic energy density of the
material impacting the tube and compare it against the value of Urt.

δ is how much the free end of a horizontal  inch barrel will sag in inches calculated with elementary
beam theory. The bending is exaggerated with longer barrels, hence why I used a longer barrel here. The
variables involved are barrel length, linear density (lb/ft), and stiffness (EI).

Pcr is the critical buckling load in pounds for this barrel with a length of  inches. Basically, this is how
much force must be applied at the end to bend (buckle) the barrel. This really only shows in Nerf when
blasters are dropped on their barrels or when barrel tapping.

.. Each material in summary

CPVC:

• Pros: Reasonably cheap. Excellent impact strength.

• Cons: Heavy.

PVC:

• Pros: Cheap. Excellent impact strength.

• Cons: Heavy.

PETG:

• Pros: Cheap. Lightweight. Clear.

• Cons: Terrible stiffness. Prone to damage. Extremely low critical buckling load.

Al (-T)

• Pros: Cheap. Reasonably lightweight. Very stiff.

• Cons: Will dent easier than other types of aluminum.

Al ()

• Pros: Reasonably lightweight. Very stiff. Good impact strength.

• Cons: Expensive.
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Al (-T)

• Pros: Reasonably lightweight. Very stiff. Good impact strength.

• Cons: Could be cheaper, but is not expensive.

Brass

• Pros: Can telescope. Reasonably lightweight. Stiff.

• Cons: Very easy to dent. Tarnishes.

Steel

• Pros: Extremely stiff.

• Cons: Extremely heavy. Could be cheaper, but is not expensive.

Copper

• Pros: Extremely stiff. Good impact strength.

• Cons: Extremely heavy. Could be cheaper, but is not expensive.

Stainless steel

• Pros: Extremely stiff. Shiny.

• Cons: Extremely heavy.

.. Observations

Aluminum and brass are comparable. The primary differences between the two is that aluminum is not
designed to telescope like brass, brass can dent far easier than aluminum (shown in the Urt column), and
aluminum is a little more than twice as stiff.

The differences between the different types of aluminum are subtle. They vary only in yield strength and
price in this table. The differences in yield strength are amplified in the impact strength before permanent
deformation column. Given only minor differences, there is little reason to buy the stronger alloys, at least
from McMaster-Carr. Other places (such as Online Metals) may have different prices and stronger alloys
may be cheaper and thus worthwhile.

PETG wins huge in weight. However, PETG also loses huge in many strength categories. A thicker walled
PETG with the same ID would be desirable. Another clear plastic such as polycarbonate might also be a
good idea.

PETG has absolutely terrible stiffness. This is shown quite evidently in the critical buckling load, which is
less than  pounds. Either be careful with PETG, sleeve it in something else (which would make it much
heavier), or use it in a structure like a turret where the geometry would increase the stiffness.

In terms of price, PETG and sch.  PVC are winners.  aluminum is the next closest.

The heavier metals, steel, copper, and stainless steel, are rare, and rightly so. They are very strong by virtue
of their geometry and material, however, they are also extremely heavy.

.. Which should I use? / Which is best?

Use materials that are readily available to you and fit the darts you intend to use. For spring blasters you
want a tighter fit to allow pressure to build higher due to the slow initial flow. For pneumatics you want a
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smooth fit because too tight fits introduce non-negligible energy losses to friction, however, be sure that the
fit is not loose or energy losses to leaks around the dart will occur.

As all of these materials have approximately the same diameter (until additional tables of different average
calibers are made), your decision relies on the properties of the material.

When you want something to telescope, brass is the best choice as it was designed to telescope.

If you want optical clarity and/or low weight, PETG would be a good choice.

If you want a material that mixes a variety of properties,  aluminum is cheap, strong in all measures,
and reasonably lightweight.

. Gas reservoirs

.. General background

Gas reservoirs are systems that supply gas to pneumatic Nerf blasters. There are many varieties, from
pressurized gas systems, to “bladders” and systems that expand a liquid into a gas.

If there’s anything you take from this section, make it this: Use gas reservoirs designed to hold gas. This limits
choices to metal LPA and HPA tanks. There are other options but there are good reasons not to use them as
I will explain.

Safety notes. Never exceed pressure ratings. Best practice is to use metal tanks at pressures below the
maximum operating pressure with a pop-safety valve in place to reduce the likelihood of over-pressurization.
HPA tanks already have a pop-safety valve.

Some latex tubes used as bladders will explode when pressurized. The explosion is extremely loud and it
will cause hearing damage. Do not use the thickest few of the smallest latex tubes on McMaster-Carr to
avoid this problem. Also, do tests with latex tubing with water instead of air — water won’t explode in this
case.

Regulators. A regulator maintains the outlet pressure at a certain level. Ideally the outlet pressure is
completely independent of the inlet pressure, but some regulators are better than others in this respect.

Pressure regulators are necessary for compressed gas stored in a solid tank. Compressed liquid and
gas stored in a bladder do not require regulators as the pressure is relatively constant (given constant
temperature in liquid systems and minimum expansion in bladder systems), however, if a lower pressure is
desired than the vapor pressure of the gas or the bladder pressure of the bladder, a regulator can be used.

There are two types of regulator: relieving and non-relieving. Avoid relieving regulators — they “relieve”
the excess pressure by exhausting it. This is very wasteful for Nerf. Also avoid “flow regulators”, which do
not regulate pressure and merely are ball valves.

For a good small regulator I suggest the Clippard MAR series. These are the smallest (less than  1
2 inches

long and 3
4 inches wide) regulators I have encountered. A relieving version exists, so be sure to buy the

non-relieving version. Clippard sells them directly, but their shipping is expensive, so I’d suggest looking
on eBay. One disadvantage of this regulator is that the outlet pressure is not completely independent of the
inlet pressure, so some adjustment is necessary. Dual-regulation (using two regulators in series) is also an
option. Two regulators in parallel with both regulators set to the same pressure will increase the flow rate
of gas through the regulators compared against one regulator.

 The title is a little misleading as I include liquid sources like CO2 on this page as well. Perhaps “propellants” or “gas sources”
would be most appropriate.

 http://www.clippard.com/store/display.asp?dept_id=163&levels=1
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Other regulators exist and are sold from places like McMaster-Carr, but these regulators are usually designed
for air compressors and are very often too large and/or too heavy.

Metal tubing. The ends of thin aluminum tubes available online can be filled with epoxy putty and a
pipe fitting, making a lightweight air tank.

Aluminum LPA tanks. Low pressure aluminum cylinders are manufactured by many companies. Catalina
Cylinders manufactures a wide variety of size cylinders with capacities that are perfectly appropriate for
Nerf.

These LPA (low pressure air, though they can be filled with any non-volatile gas) tanks are very light,
not expensive, extremely durable, and very strong. The 85 in2 tank I received from Catalina Cylinders is
extremely safe at 150 psi, weighs less than half a pound, and was very cheap.

Due to the lack of popularity of these tanks, they are only available from the manufacturers directly. Most
manufacturers do not sell single units but are willing to help out someone with an odd project. Until
someone buys a small stockpile of these tanks to resell, contacting the manufacturer directly is the only
way to get one.

Catalina’s tanks use a custom fitting called the F that connects the uncommon threads of their cylinder to
female 1

4 inch NPT.

• The burst pressure given is just that — the pressure the tank bursts at. A safety factor of . is common
for pressure vessels, so the 600 psi burst cylinders have a pressure rating of 240 psi.

• The gasket on the fitting can burst out at high pressure, leaking gas. Be sure to tighten the cylinder
into the fitting adequately. Also, I have successfully used a cable tie tightened around the O-ring to
prevent bursts.

High pressure air. HPA tanks are 3000 psi or 4500 psi tanks meant primarily for paintball. These tanks
can easily be used for the similar Nerf game.

CO2.

PET bottles. Many people use soda bottles made from PET plastic as pressure vessels. This is a dangerous
practice that I will not suggest, especially given cheap and very attractive alternatives like aluminum LPA
tanks.

PET bottles are not designed to hold gas pressure. They are designed to hold liquid under pressure with
some gas, and the pressure does not get very high. PET bottles explode very easily, so easily that I never
will suggest them. The remainder of my discussion here are reasons not to use PET bottles.

Not all PET bottles are the same. Bottles for non-carbonated beverages such as water often are not designed
to hold pressure, even if they appear to be otherwise like carbonated bottles. There also are many differences
in bottles between brands. One brand of  liter bottle may burst at 100 psi and another may burst at 250 psi.
There is the possibility that some bottles are lemons too even in a good brand. The bottles might not stand
up to repeated pressurization as they are designed to hold pressure for a certain amount of time.

A “safety factor”, that is, the number of times below the failure stress the operating stress is, is very
important. Getting useful gas mass from a PET bottle requires pressures near the burst pressure. Most
people do not seem to have a problem with this, but it is dangerous. The general safety factor over burst
pressure for pressure vessels is .. So if a pressure vessel bursts at 150 psi, you should operate at a
maximum of 60 psi to satisfy the safety factor. As the burst pressures vary from brand to brand and even

 http://www.catalinacylinders.com/lp.html
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bottle to bottle within brands, no specific recommendation can be made, but I think 60 psi should be safe
for most bottles.

Temperature is also something to consider. Pumping gas increases it’s temperature and extremely hot
temperatures are easily possible (this is called adiabatic heating). Temperatures of 600 F or higher are not
uncommon if you neglect heat transfer in your analysis. The high temperatures will be lost relatively quickly
to heat transfer. The melting point of PET is 500 SI…of course, the plastic won’t reach that temperature
due to the specific heat of the plastic, but it certainly will be weakened as the heat is transfered. This is an
issue soda bottle manufacturers don’t worry about because they are not pumping gas into the bottle.

Even operating at safe pressures, I’d be afraid of sudden stresses on the bottle. If you fall on your bottle,
will it burst? You could do some tests to figure it out. This is something the water rocket people, who
typically pressurize 2 L bottles, don’t have to worry about but I think is a very real possibility for Nerf.
Spud gunners don’t have to worry about this either as they are not playing a game with their creations.

PVC LPA chambers.

Rubber bladders.

Safety. Any pressurized gas container is a bomb if mistreated. Steps can be taken to virtually eliminate
the chance of catastrophic failure.

• Pop-safety and relief valves release gas when the pressure gets too high. These are available from
essentially any place that sells pneumatic components, McMaster-Carr being one of them.

• Valves to quickly vent chambers can be particularly useful. Often a gas charge will be left in a tank after
a match so they are a good idea to have even not considering safety. Gas chambers, unless specifically
designed to be like HPA or CO2 tanks, should not be left pressurized for extended periods of time
because of a phenomena called creep. The rapid discharge of a gas can be loud; an exhaust muffler,
available from McMaster-Carr will reduce the noise level greatly

• “Safety” valves much in the same vein of mechanical safeties on real guns can be useful to prevent gas
flow from the gas source to the gas chamber. Regulators can be adjusted such that no gas can flow
through them, making them fill two jobs. Similarly, mechanical stops preventing the motion of the
trigger exactly like safeties in real guns can also be employed.

What doesn’t improve safety. Wrapping duct tape, similar tapes, denim, or something similar around
an inadequate chamber will likely make the chamber less safe. The sleeve will provide no protection in
an actual failure. And while it might increase the pressure at which failure occurs, that just increase the
amount of potential energy to be released, making the explosion more dangerous.

Wrapping carbon fiber, a second pipe, or something else much stronger than the pressure vessel around
the vessel probably will improve safety. However, if you’re going to spend the money on those options,
you’d be better off turning your attention to proper pressure vessels. Also, the increase in weight could be
unacceptable.

.. Number of shots from a gas source

Questions of the adequacy of a gas reservoir for lasting a Nerf war are common. With some algebra and
logic, the number of shots a gas reservoir will provide can be reasonably accurately predicted, greatly
aiding the design process.

 The specific heat is how much energy is required to raise the temperature of a unit cube of material one degree. Basically, two
cubes of material at the same temperature but with different specific heats will have different internal energies. Heat transfer is
energy transfer, not temperature transfer.
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For all of these calculations we’ll take the approach that a gas reservoir becomes useless when its output
pressure runs below the operating pressure. In some cases more shots can come from a gas reservoir in
this state, however, they will be of lower pressure and consequently lower power.

As with most calculations in this section, all pressures are absolute unless noted otherwise.

These calculations are simple and may not be representative of reality. They make a number of assumptions,
specifically, that regulators are consistent and their outlet pressure is not dependent on the inlet pressure,
that the temperature during the use of a liquid gas source is constant, and that the pressure of a bladder is
independent of the bladder’s volume.

More complicated and accurate formulas can be derived with more realistic assumptions by similar
procedures.

The general approach to find the number of shots one can get from a gas source is to track mass. The
conservation of mass is a powerful statement and its use here demonstrates that. In brief, figure out how
much mass is removed from the gas reservoir each shot, remove that mass to calculate the new gas reservoir
gas mass, and repeat.

Non-regulated gas sources. Non-regulated gas sources are particularly complex; the gas flows from the
gas reservoir into the gas chamber until the pressure in the two equalize. This pressure is different for each
step; consequently an iterative approach using spreadsheets often is most convenient.

The time scale of the discharge of gas from a gas reservoir in a Nerf war is long, therefore an isothermal
assumption is useful. To reiterate points made earlier, isothermal assumptions are good for when there is
heat transfer to ensure that the gas temperature is constant — heat transfer is only possible with a rather
large time scale.

Pr0 is the starting pressure of the gas reservoir. Vr is the gas reservoir volume. Vc is the gas chamber volume.
Patm is atmospheric pressure. R is the specific gas constant. T is the temperature of the gas. n is the shot
number. mr(n) is the total gas mass in the gas reservoir after shot number n. Similarly, Pr(n) is the pressure
of the gas reservoir after shot number n.

Using ideal gas assumptions (specifically, the mass form), note that mr(0) = Pr0Vr/R/T and Pr(0) = Pr0.
∆mn+1

n , the amount of gas mass removed can be found by the ideal gas law as well, but some logic is
necessary before finding it. Gas at atmospheric pressure is left in the gas chamber; this mass must be
subtracted from the total mass of the gas chamber at the equilibrium pressure (i.e., the common pressure
that both the gas reservoir and gas chamber equalize to).

That statement is made more explicit like this:

∆mn+1
n =

PeqVr

RT
− PatmVc

RT
(.)

What is Peq? It is the pressure the gas reservoir and chamber equalize at (so Peq = Pr(n + 1)). Using mass
conservation and the ideal gas laws we can calculate this. As we’ll see, the isothermal assumption will
reduce this to Boyle’s law.

The gas reservoir has a pressure after the nth shot of Pr(n). The gas chamber is evacuated after a shot so it
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has a pressure of Patm.

mr + mc = mtotal (.)

mr =
Pr(n)Vr

RT
(.)

mc =
PatmVc

RT
(.)

mtotal =
Peq(Vc + Vr)

RT
(.)

By combining these equations one arrives at the following:

Pr(n)Vr + PatmVc = Peq(Vc + Vr) (.)

Note that the term RT cancels out from each statement — this is because for an isothermal process PV is
proportional to mass — and consequently Boyle’s law can be seen as simply a statement of the conservation
of mass for isothermal processes.

Solve for Peq and we end up at:

Peq = Pr(n + 1) =
Pr(n)Vr + PatmVc

Vc + Vr
(.)

From here we can derive an explicit formula for ∆mn+1
n . Plug Peq into the equation for ∆mn+1

n .

∆mn+1
n =

Pr(n)V2
r + PatmVcVr

RT(Vc + Vr)
− PatmVc

RT
(.)

The initial conditions of the mass in the gas reservoir (at “shot zero”) are:

mr(0) =
Pr0Vr
RT

, Pr(0) = Pr0 (.)

Unfortunately there does not appear to be any simple equation — even an implicit one — to find the number
of shots one can get from a non-regulated gas reservoir. Use of a spreadsheet with the mass difference and
the equalization pressure formulas seems ideal. The ugly expressions alone are reason enough to use a
regulator; combine that with the consistency of pressure and regulators seem extremely attractive.

To account for the volume of whatever is between the gas reservoir and the gas chamber (tubing, valves,
etc.), figure out approximately what the volume that is exhausted and replenished is and add that to the
gas chamber volume. The volume that is not exhausted must be added to the gas reservoir volume.

Regulated gas sources. The derivation for regulated gas sources is far cleaner than that of non-regulated
sources as the new equalized pressure of each shot does not need to be calculated.

Like with non-regulated sources we’ll find ∆m, the difference in gas reservoir mass between shots. Each shot
is pressurized to Preg, the regulated pressure, and after the gas is exhausted what remains is at atmospheric
pressure. Note that here the mass removed per shot is independent of the number of shots taken due to

 At least until gas reservoir pressure drops below the regulated pressure, but our task is to find where that happens here so we do
not worry about that.
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the regulator. Following similar logic to that applied for non-regulated sources we find that

∆m =
Vc(Preg − Patm)

RT
. (.)

Here Preg is the set pressure of the regulator. Using mass conservation (like we did with non-regulated
sources again) we can arrive at the following equation:

Pr0Vr = PminVr + nVc(Preg − Patm) (.)

Here Pmin is the minimum acceptable pressure of the gas reservoir. Sometimes you want to refill before
the gas reservoir’s pressure drops below the regulated pressure as a precaution against that — however —
most people are interested in how many shots at the regulated pressure they can get from a reservoir, so
Pmin = Preg. Rewriting the equation we arrive at:

n =
Vr(Pr0 − Preg)

Vc(Preg − Patm)
(.)

Round this result down as you can’t get a fraction of a shot.

Note that this assumes the regulator is perfect and regulates at the pressure it was set at consistently. Some
regulators are better than others at this; the small Clippard MAR regulators I have used have an outlet
pressure that seems rather dependent on the inlet pressure. This I do not consider to be a major problem as
adjustments can be easily made on the fly.

Non-regulated liquid sources. Examples of liquid sources are CO2 and propane.

Regulated liquid sources.

Bladders. For a bladder, you can assume that the pressure is approximately constant and basically divide
the total mass a bladder contains by the total mass used by a shot (calculated via the ideal gas law) to
calculate how many shots the tank has. For a more complicated model, assume that the pressure drops
linearly as a function of volume from the bladder’s operating pressure to about % less than that when
the bladder is empty. Real bladders’ pressure decreases by approximately that much, though not linearly.

.. Latex tubing

More information about latex tubing is available online [Tre].

Pressure generated. The pressure rating places like McMaster-Carr tells is not a “maximum pressure”
rating. Latex tubing keeps pressure approximately constant. If air of higher pressure is pumped in, it will
expand until it reaches the equilibrium pressure of the tube. Latex tubing does not break from pressures
that are too high — it breaks when too much volume is put in. This is a very common misconception.

This pressure rating is approximately the pressure needed for the tube to expand at first. Pressure spikes as
a function of volume for the first few pumps, and once the rubber expands, the pressure is approximately
independent of volume. The actual operating pressure of the tubing is approximately two-thirds of the
reported pressure on McMaster-Carr. This figure is based on tests of a single tube.

An approximate equation for pressure based on data provided by McMaster-Carr is

P(t, di) = 31.4
√

t +
18.0t

di
(.)
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where

P is the pressure in psi,

di is the internal diameter of the tube (unfilled) in in, and

t is the tube wall thickness in in.

Approximate expansion diameter. I’ll start with a few assumptions. When the tube expands, it is assumed
to stop expanding when its expanded inner diameter equals a certain multiple of the unexpanded diameter.
This is justifiable based on the observed behavior of the rubber. The Gent hyperelastic model makes the
same assumption. My second assumption is that when the tube is fully expanded the cross-sectional area of
the expanded tube is a multiple of the cross-sectional area of the unexpanded tube. I originally anticipated
these areas would be equal as I know for small deformations, rubber is approximately incompressible (i.e.,
the volume is preserved). But that’s only applicable for volume, not area; the tube is expanding in length
too. Also, it is only applicable for small deformations. I do not know how the rubber will act for large
deformations.

Do is the outer diameter of the tube. Di is the inner diameter of the tube. t is the tube wall thickness. The
superscript e refers to the expanded state. A variable or constant without e is in the unexpanded state or it
does not refer to any state (like the constants).

A = π
4 (D2

o − D2
i ) is the equation for the cross-sectional area of the unexpanded tube.

Ae = π
4 [(De

o)
2 − (De

i )
2] is the equation for the cross-sectional area of the expanded tube.

De
i = C1Di is my assumption about when the tubes stop expanding.

Ae = C2A, where C2 is my assumption about the cross-sectional areas of the tubes when they stop
expanding.

Plugging all these equations together and solving for De
o, I find that De

o =
√

C2
1 D2

i + 4tC2(Di + ti) .

The data points I have available:

• Unexpanded ID: 3/8 in, wall thickness: 3/16 in, expanded OD: a bit more than 3 in (from memory)

• Unexpanded ID: 1/8 in, wall thickness: 3/16 in, expanded OD: 1.25 in

• Unexpanded ID: 1/8 in, wall thickness: 7/32 in, expanded OD: 1.375 in

A linear regression leads to C1 = 7.35 and C2 = 3.33 (R2 = 0.9999, which would definitely be lower if there
were more data points). These constants seem reasonable given my understanding of the phenomena, so
it is reasonable to accept that the tubes’ inner diameters expand to about 7.35 times their original inner
diameter and the cross-sectional area increases to 3.33 times the original cross-sectional area.

The equation above with these constants can be used to find the expanded outer diameter. The equation
with C1 can find the expanded inner diameter. The definition De

o = De
i + 2te can find the expanded wall

thickness.

This formula is the best I can do with the data I have on hand.

An equation for the inner diameter of a tube if the outer diameter is restricted (i.e., does not fully expand)
follows. This is based on the assumption that the area ratio scales linearly with the inner diameter ratio.

De
i = (C1Di)

−1[
√

4(tC2)2(Di + t)2 + (C1Di)2(De
o)

2 − 2tC2(Di + t)] (.)
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.. Stresses in gas reservoirs

. Springs

. Plunger rods

Desired performance characteristics from a plunger rod.

Available materials and material property data.

Static analysis of forces on plunger rods.

Dynamic analysis of forces on plunger rods.

Conclusions.

. Common failures

. Material properties

 Testing and test data

. Range













      

ra
ng

e,
m

muzzle velocity, m/s

measured
theory, Cd = .

Figure : Measured ranges as a function of muzzle velocity vs. a theoretical model (eqn. .) with Cd = ..
Experimental data from Beaver [Bea].

. Muzzle velocity

.. Compensating chronometer readings to account for drag

If a chronometer is used to measure muzzle velocity, some compensation to account for the distance
between the barrel tip (Lc) and the distance between the chronometer sensors (Ls) might be necessary. A
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Table : Material properties

This data represents only generic figures found in textbooks and online reference. Use data provided by
manufacturers and suppliers or ask for such data for the most precise and accurate numbers.
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Plastics

ABS . . . . — — . 

Acrylic . . . . .  . 

Delrin . . . . .  — —

Nylon / . . . .   . 

Polycarbonate . . . . .   

Polystyrene . . . .   . 

PET . . . . .  — —

PETG . . . . .  . 

LDPE . . . . .  . .

UHMW-PE . . . . .  . 

HDPE . . . . — — . 

PVC . . . . — — . 

CPVC . . . . — — . 

Metals

Al (-T) .  . .    

Al (-T) .  . .    

Al (-T) .  . .    

Brass ()   . . .  . 
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chronometer really just measures ∆t and uses ∆t ≡ Ls/V to find V, the apparent muzzle velocity. Using

x(t) =
log(V0Kt + 1)

K
. (.)

we can compensate for these effects. If the equation above is rearranged for t and the time the projectile
takes to reach the first chronometer sensor (t1) is subtracted from the time the projectile takes to reach the
second chronometer sensor (t2), we can define ∆t ≡ t2 − t1 and find

V0 = V

(
eK(Lc−Ls) − eKLc

LsK

)
. (.)

Generally V0/V is near . For example, for a typical Nerf dart with Lc = 5 cm and Ls = 10 cm, V0/V =

1.0046.

. Dart mass

. Dart stability
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% https://www.facebook.com/groups/164130663628549/permalink/533873703320908/

% note that \ddot{x} dx = \dot{x} d \dot{x} ==> memorize this!

% TODO: Compress the images more/better.
% TODO: Add command line argument to scripts to disable plots.
% TODO: Set up compilation script so that not all Octave scripts are run on compilation
% TODO: Fix black boxes in square roots. http://tracker.luatex.org/view.php?id=769
% http://stackoverflow.com/questions/10585581/passing-file-name-as-a-command-line-argument-to-octave-script
% http://www.leancrew.com/all-this/2009/10/octave-and-command-line-arguments/
% https://www.gnu.org/software/octave/doc/interpreter/Executable-Octave-Programs.html
% https://techlogbook.wordpress.com/2008/04/17/octave-as-executable-and-using-argument-from-command-line/

% writing quality, consistency suggestions:
% TODO: change all non-variable/index subscripts to \text
% TODO: add punctuation to equations
% TODO: run everything in suggest.sh

% ideas of where to get other ideas:
% TODO: look through your NH and NRev posts for other things to add
% TODO: look for corrections in trettel_67.pdf
% TODO: look in FANG and other folders in Zotero for ideas
% TODO: look in synced reference directory for books that you used for Nerf stuff in the past
% TODO: look in Ballistics folder of bookmarks for ideas
% TODO: look in ~/projects/active/fang/FANG 4 posts/
% TODO: look in ~/projects/active/fang/*.txt, especially practical guidelines.txt
% TODO: look in ~/projects/inactive/NerfDb/QEVs/, QEVs.abw, and qevs.txt
% TODO: look in ~/projects/inactive/nerf/Nerf engineering book/
% TODO: look in ~/projects/inactive/nerf/Content/ for some outlines
% TODO: look in ~/notes/hobbies/nerf/
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